

Frequenzumrichter JS- E2100

IP20 (21) - Schaltschrankmontage

0,2....400 kW

Sicherheitshinweise, Installations- und Bedienungsanleitung

INHALT	SEITI
1) Allgemeine Installations- und Sicherheitshinweise	1
2) Produktübersicht / Produktdaten	12
3) Montage des Frequenzumrichters	17
4) Elektrische Anschlüsse am Umrichter	18
5) Steuerhardware und Hardware-Konfiguration der I/O Steuerkanäle	28
6) Bedienpanel: Konfiguration und Funktion	35
7) Parametrierung	38
8) Parametergruppe 100: Basisparameter	40
9) Parametergruppe 200: Umrichter Ansteuerung	47
10) Parametergruppe 300: Konfiguration digitale I/Os	52
11) Parametergruppe 400: Konfiguration der analogen I/Os	57
12) Parametergruppe 500: Fixfrequenzen, automatische Frequenzfolgesteuerung	60
13) Parametergruppe 600: Bremssteuerung / Hilfs-Begrenzerfunktionen	61
14) Parametergruppe 700: Fehlerhandling und Schutzfunktionen	65
15) Parametergruppe 800: Autotuning – Motordateneingabe	70
16) Parametergruppe 900: Schnittstellenparameter	73
17) Parametergruppe A00: PID Regler Parameter	75
18) Parametergruppe C00: Drehzahl / Drehmomentsteuerung	79
19) Parametergruppe E00: Alternative Motorparameter	81
20) Diagnosetools	84

Rev. 01-DE- 2019-03-KPP Softwarerevision: 5.5x

1) Allgemeine Installations- und Sicherheitshinweise für JS-Technik Frequenzumrichter Serie E2100

WICHTIG!!

Diese Anleitung enthält Installations- und Sicherheitshinweise, welche für die Montage, die Inbetriebnahme und die Bedienung der Frequenzumrichter E2100 (im folgenden auch als Umrichter, bzw. Gerät bezeichnet) unbedingt beachtet werden müssen.

Bevor Arbeiten zur Installation, bzw. Inbetriebnahme des Frequenzumrichters aufgenommen werden muss diese Anleitung vollständig gelesen und vollinhaltlich verstanden werden. Jeder, der mit Arbeiten am Gerät, bzw. mit dem Gerät zu tun hat muss Zugang zu dieser Anleitung erhalten und sich mit dem Gerät vertraut machen. Insbesondere gilt dies für die Kenntnisse und Beachtung der Sicherheits- und Warnhinweise.

Die in dieser Anleitung aufgeführten Hinweise müssen beachtet werden, um:

Die Sicherheit für Mensch und Maschine zu garantieren Sichere Funktion und zuverlässigen Betrieb zu gewährleisten Abnahmen und Zertifizierungen zu ermöglichen Garantie und Gewährleistung des Herstellers aufrecht zu erhalten

Folgende Symbole werden in dieser Anleitung verwendet:

GEFAHR-WARNUNG-VORSICHT

Achtung es besteht unmittelbares Risiko für Personen- oder erhebliche Sachschäden

ACHTUNG-UNBEDINGT BEACHTEN

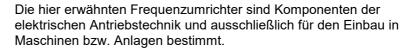
Ein Nichtbeachten kann zu erheblichen Störungen im Betrieb, zu Geräteschäden und zu Betriebsausfällen führen

Allgemein:

Frequenzumrichter werden mit Spannungen betrieben, welche zu Personenschäden führen können.

Je nach Einbau und Schutzart können blanke spannungsführende Teile zugänglich sein. Je nach Betriebsart, vor allem aber im Fehlerfalle können Teile/Oberflächen von Umrichtern oder Zusatzkomponenten sehr heiß werden, und bei Berührung ebenfalls zu schweren Personenschäden führen.

Das unzulässige Entfernen von Abdeckungen oder anderen Teilen des Umrichters, der unsachgemäße Einsatz, die unsachgemäße Montage, Inbetriebnahme oder Bedienung kann zu einem erheblichen Risiko für Personen- und Sachschäden führen.



Arbeiten für die Montage, den Anschluss, die Inbetriebnahme und die Bedienung des Umrichters dürfen nur von geschultem Fachpersonal durchgeführt werden. Die Normen IEC 364 bzw. CENELEC HD384 oder DIN VDE 0100 und alle nationalen Unfallverhütungsvorschriften müssen beachtet werden.

Geschultes Fachpersonal hat eine fachliche Ausbildung, Kenntnisse der zugehörigen Normen und Vorschriften und Erfahrung im Umgang mit Komponenten der elektrischen Antriebstechnik. Es ist in der Lage, die übertragenen Aufgaben zu beurteilen und die daraus resultierenden Gefahren rechtzeitig zu erkennen

Bestimmungsgemäße Verwendung des Frequenzumrichters

Die Verwendung ist auf die stufenlose Drehzahlstellung von Dreiphasen-Drehstromasynchronmotoren und Permanenterregte Synchronmotoren beschränkt. Der Anschluss anderer elektrischer Verbraucher ist nicht zulässig und kann zu Personenschäden, schweren Schäden an der Anlage, am angeschlossenen Verbraucher und/oder am Umrichter führen.

Einhalten einschlägiger Normen und Vorschriften

Eine Inbetriebnahme der Anlage ist nur erlaubt, nachdem festgestellt wurde, dass die Anlage, bzw. die Maschine den Bestimmungen der Maschinenrichtlinie (89/392/EWG) und den Vorschriften der EMV-Richtlinie (89/336/EWG) entspricht.

Die Frequenzumrichter sind konform zur Niederspannungsrichtlinie konstruiert. (73/231/EWG). Die Harmonisierten Normen EN50178 (VDE160) und EN60439-1 (VDE0660, T. 500) kommen zur Anwendung.

Das Produkt Frequenzumrichter JS-Technik E2000/E2100 ist nur eingeschränkt erhältlich (gemäß IEC 61800-3). Frequenzumrichter können Funkstörungen verursachen, Der Betreiber ist dafür verantwortlich entsprechende Gegenmaßnamen zu setzen.

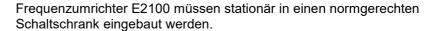
Umgang mit Frequenzumrichtern, Transport, Lagerung

ACHTUNG - GEFAHR

Bei unsachgemäßem Vorgehen im Zuge von Transport, Lagerung, Handhabung können Bauelemente beschädigt, bzw.

Isolationsabstände verändert werden, ein Betrieb ist in diesem Falle untersagt, weil die entsprechenden Normen, bzw. Vorschriften nicht mehr eingehalten werden können.

Vor Inbetriebnahme sind die Geräte deshalb auf mechanische Unversehrtheit zu überprüfen.


Die Umrichter enthalten bestimmte Bauteile, welche bei Berührung durch statische Aufladung zerstört werden können. Es ist deshalb unbedingt zu vermeiden, Bauteile oder Kontakte im Innern des Umrichters zu berühren.

Eine Lagerung des Umrichters sollte in der Originalverpackung erfolgen.

Sollten Frequenzumrichter länger als ein Jahr gelagert sein, so müssen die Zwischenkreiskondensatoren neu formatiert werden, die Vorgehensweise dazu ist mit dem Hersteller des Umrichters abzuklären

Einbau von Frequenzumrichtern

Die Erdung muss nach den gängigen Vorschriften erfolgen

Die Mindestabstände untereinander, zu anderen Geräten und zu benachbarten Schaltschrankkomponenten müssen eingehalten werden. Die Mindestabstände sind in der technischen Beschreibung definiert

Bei senkrechter Anordnung von Komponenten ist auf ausreichende Kühlluftzirkulation zu achten.

Für die Geberrückführung und für die Steuerleitungen dürfen nur von JS-Technik freigegebene Kabel verwendet werden.

Das Eindringen von Staub, Flüssigkeiten, Wasser, Wasserdampf, aggressiven oder entzündlichen Gasen in den Schaltschrank muss ausgeschlossen werden.

Auf eine ausreichende und geeignete Wärmeabfuhr aus dem Schaltschrank ist zu achten - ca. 5% der abgegebenen Leistung fallen als Wärme an.

Der Einsatz des Frequenzumrichters in explosionsgeschützten Räumen ist nicht gestattet

Elektrischer Anschluss von Frequenzumrichtern

Vor jeglichen Arbeiten an elektrischen Anschlüssen ist die gesamte Anlage entsprechend einschlägiger Sicherheitsnormen Spannungsfrei zu schalten, auf Spannungsfreiheit zu prüfen und gegen Wiedereinschalten zu sichern.

GEFÄHRLICHE KONDENSATOR-LADUNG

Im Gerät können die Kondensatoren noch bis zu 5 Minuten eine gefährliche Spannung halten, während dieser Zeit dürfen also weder im Gerät, noch am Gerät Arbeiten durchgeführt werden!!

SICHERE TRENNUNG

Die Anschlüsse für die Steuereingänge und die Geberrückführung weisen eine **einfache Isolation** nach EN50178 auf.

Der Anwender hat durch entsprechende Maßnahmen dafür Sorge zu tragen, dass beim Verbinden externer Steuerkreise mit sicherer Trennung diese Anforderungen nach EN50178 eingehalten werden

ERDUNGS-VORSCHRIFTEN

Die Frequenzumrichter dürfen nur fest installiert werden, mit fixer Verdrahtung. Ein Anschluss über Stecker oder Ähnliches ist nicht zugelassen.

Abhängig von verschiedenen EMV-Filterkombinationen können Ableitströme > 3,5 mA auftreten Es ist daher nach EN 50178 ein Schutzleiterquerschnitt von mind. 10mm² (Kupfer) notwendig oder es ist ein zweiter Schutzleiter zu verlegen.

Erdungsverbindungen sollten generell kürzestmöglich sternförmig zum zentralen Erdungspunkt erfolgen, um Erdschleifen zu vermeiden.

Lange Motorleitungen

JS-Technik Frequenzumrichter sind für den zuverlässigen Betrieb mit langen Motorleitungen ausgelegt.

Allerdings muss man bei langen Leitungen, ohne jegliche Filtermaßnahmen mit zusätzlichen Schaltverlusten rechnen, was sich natürlich auf den Gesamtwirkungsgrad der Anlage auswirkt.

Folgende Tabelle zeigt die maximalen Motorkabellängen für einen zuverlässigen Betrieb:

Umrichter Baugröße	Kabel geschirmt	Kabel ungeschirmt
E1E6	200m	300m
E7C61	100m	200m
C7C8	100m	100m
C9CA	100m	100m
CB0CB	50m	50m

Man muss jedoch beachten, dass lange Motorleitungen (ab etwa 30m) bei hohen Schaltgeschwindigkeiten und steilem Spannungsanstieg Überspannungsspitzen am Motor verursachen können, welche die Wickelkopfisolation des Motors zusätzlich belasten.

Die Spannungs Anstiegsgeschwindigkeit des Umrichters kann man mit etwa du/dt=1000V/us angeben.

Je nach verwendetem Motortyp (du/dt Verträglichkeit) kann es daher notwendig werden, zusätzliche Filtermaßnahmen am Umrichter-Ausgang zu ergreifen.

Unabhängig von der Umrichterbaugröße wird deshalb folgende Konfiguration empfohlen:

Kabellänge	50100m	100200m	200300m
Filter Empfehlung	dv/dt Begrenzer	Motor Drossel	SINUS filter

Falls noch zusätzliche andere Anforderungen bestehen (niederiger EMC Störpegel, Motor-Geräusch Begrenzung), kann es sein, dass noch strengere Filtermaßnamen notwendig werden (SINUS Filter, allpolige SINUS Filter)

Im Zweifelsfalle sollte der Hersteller des Motors / Umrichters kontaktiert werden, JS-Technik Applikationsingenieure können die entsprechende Beratung bieten.

Leckströme: Lange Motorleitungen können zu erhöhten Fehlerströmen führen, dies kann sich durch EMV Störungen im näheren Umfeld, als auch durch Fehlauslösen des FI Schutzschalters bemerkbar machen. Allpolige SINUS Filter sind das Mittel erster Wahl, diese Störungen zu beheben

Achtuna

Motorkabel, länger als 30m können Spannungsspitzen am Motor verursachen. Diese können die interne Isolation des Motors zerstören.

Im Falle der Verwendung von SINUS Filtern sind die Parameter F159 und F747 auf =0 zu setzen, um eine Überhitzung / Zerstörung des Filters zu vermeiden.

Eingebaute C3 EMV Filter: Diese sind für eine Kabellänge von 30 m ausgelegt. Für längere Kabel können ev. zusätzliche Filtermaßnahmen notwendig werden um den C3 Level zu halten.

Für den SENSORLESS VECTOR Betrieb dürfen nur dv/dt Begrenzer verwendet werden.

Nur Filterkomponenten professioneller Hersteller dürfen verwendet werden Ausgansfilter Komponenten müssen von JS-Technik freigegeben werden

Durchführung von Isolationsmessungen

Bei der Durchführung von Isolationsmessungen im System muss der Umrichter und ev. EMV Filter abgeklemmt werden. Im Umrichter verwendete Bauteile könnten die Messung verfälschen, bzw. durch die Messung zerstört werden.

Die Geräte sind im Rahmen der Endkontrolle bereits einzeln einer Isolationsprüfung nach EN15178 unterzogen worden

Potentialausgleich

Falls Komponenten ohne galvanische Potentialtrennung mit dem Umrichter verbunden werden ist durch geeignete Maßnahmen für Potentialausgleich zu sorgen, andernfalls kann es zu Schäden am Umrichter, oder an den verbundenen Geräten kommen.

GEFAHR VON BRAND UND VERBRENNUNG

Bremswiderstände

Im Falle von regenerativem Betrieb wird die gesamte kinetische Energie des Antriebes im Bremswiderstand in Wärme umgewandelt. Durch falsche Dimensionierung dieses Widerstandes, bzw. durch nicht ausreichende Wärmeabfuhr kann es zu einer erheblichen Brandgefahr kommen.

Auch eine zu hohe Eingangsspannung kann zu Überhitzung der Bremswiderstände führen.

Die Bremswiderstände müssen deshalb mit zwei, in Reihe geschalteten Fühlern versehen werden, welche bei Überhitzung öffnen und direkt die Stromzufuhr zum Umrichter unterbrechen.

Bremswiderstände können sehr heiß werden, sodass die Gefahr von Verbrennungen beim Berühren besteht. Die Widerstände müssen also in entsprechender Position montiert werden, um eine ungewollte Berührung zu vermeiden

AUSLÖSEN VON FEHLERSTROM-SCHUTZSCHALTERN

(Fehlerstrom Schutzschalter (FI)

Der Einsatz von Frequenzumrichtern kann das Ansprechen von Fehlerstrom-Schutzeinrichtungen verzögern, beinträchtigen oder überhaupt verhindern.

Für den Personenschutz müssen Anlagen mit Frequenzumrichtern deshalb folgendermaßen abgesichert werden:

Leitungsabsicherung: Schmelzsicherungen oder automatische Lasttrenner (Dimensionierung: siehe Tabellen).

Fehlerstromschutzschaltung: Allstromsensitive Fehlerstromschutzschalter (mindestens Typ "B") für die Umrichterabgänge. An diese Abgänge dürfen keine anderen Verbraucher angeschlossen werden.

Für Einphasenumrichter dürfen auch Schutzgeräte Typ "A" oder "F" verwendet werden.

Der Auslösestrom der Fehlerstrom-Schutzschalter sollte so gewählt werden, dass dieser durch die Ableitströme, welche von PWM Frequenz, Motortyp, Motorleitungslänge abhängig sind, nicht ausgelöst wird. Empfohlen werden 300 mA für Industrieumgebung

Grundsätzliches für zuverlässigen und störungsfreien Betrieb

- Richtige Dimensionierung des Antriebes sicherstellen (Motor, Umrichter, mechanische Übertragungselemente).
- Umrichternennspannung, Netzspannung überprüfen und Tolleranzen beachten.
- Richtige Verbindung von Netz und Motorleitungen überprüfen, auf festen Sitz aller Klemmenverschraubungen achten.
- Für alle Steuerleitungen geeignete Kabel verwenden, getrennt von Netz, bzw. Motorleitungen verlegen, min. 15 cm Abstand. Für Längen > 1m geschirmte Leitungen verwenden, einseitig am Umrichter erden.
- Leitungen zu Bremswiderständen verdrillen oder abgeschirmtes Kabel verwenden.
- Abgeschirmtes Kabel wird auch für die Motorleitung empfohlen, vor allem für Leitungslängen >30 m.
- Erdschleifen vermeiden, alle Erdungen großflächig ausführen, und mit einem zentralen Schaltschrank-Erdungspunkt sternförmig verbinden.

FÜR DEN SICHEREN BETRIEB ZU BEACHTEN Durch den Einbau von Leistungstrennschaltern sollte eine selektive Abschaltung einzelner Umrichter ermöglicht werden

Die Programmierung des Umrichters ist zu überprüfen.

Im Fehlerfalle kann es bei entsprechender Programmierung des Umrichters über mehrere Startversuche zu einem automatischen Wiederanlaufen des Antriebes kommen. Im Falle eines Defekts im Frequenzumrichter kann es zu unvorhersehbaren Betriebszuständen kommen. Die Funktion von Überwachungs- und Begrenzungselementen, welche über den Umrichter wirken, die Reaktion auf eine Drehzahlvorgabe, sowie die Bremsfunktion können beeinträchtigt werden. Es müssen für die sicherheitsrelevante Überwachung des Antriebes externe, vom Frequenzumrichter unabhängige, und unabhängig arbeitende Sicherheitseinrichtungen installiert werden

Schutzfunktionen

Obwohl der Umrichter mit intelligenten elektronischen Schutzfunktionen versehen ist, kann es durch wiederholtes Auslösen dieser Einrichtungen zu Schäden im Umrichter kommen.

Die Umrichter sind mit Kurzschluss und Erdschlussschutz versehen, im Fehlerfalle wird eine entsprechende Fehlermeldung angezeigt. Ein wiederholtes Auftreten von Kurz- oder Erdschlüssen kann zu einer Beschädigung des Gerätes führen.

Die Verbindung zwischen Motor und Umrichter sollte fix ausgeführt werden. Falls dennoch eine Unterbrechung notwendig sein sollte, so dürfen Motoren nur im Stillstand und bei Frequenz=0 (Endstufe nicht freigegeben) zugeschaltet werden.

Ein Wiederholtes Ein und Ausschalten der Netzzuleitung kann zu Schäden im Umrichter führen, ist ein Zyklischer Betrieb von mehr als einem Schaltvorgang pro 5 min. notwendig, so sollte man den Hersteller konsultieren.

Netzverhältnisse:

Der Frequenzumrichter ist nur für den Anschluss an symmetrische Dreiphasennetze mit einer Maximalspannung gegen Null-/Erdleiter von 300 V ausgelegt. Für höhere Spannung ist ein Transformator vorzusehen

Für Einphasengeräte gilt eine Maximalspannung von 240V +15% Der Betrieb an unsymmetrischen Systemen, ungeerdeten Systemen, oder unsymmetrisch geerdeten Systemen muss mit dem Hersteller abgeklärt werden.

Kurzschlussleistung des Netzes:

Bei Betrieb an Netzen mit hoher Kurzschlussleistung sind Netzdrosseln im Eingang vorzusehen (Uk=4%). Dies gilt speziell bei Dauerbetrieb (S1)

Bei Netzen mit einer Kurzschlussleistung größer als die 20 fache Umrichter-Nennleistung sind Eingangsdrosseln zwingend vorgeschrieben.

Messungen der elektrischen Größen am Frequenzumrichter:

Die Strom/Spannungsverhältnisse am Ein- bzw. Ausgang des Umrichters sind zum Teil nicht sinusförmig. Die Messung dieser Größen mit ungeeigneten Messgeräten kann zu falschen Ergebnissen führen. Eingangsseitig ist der Stromverlauf stark mit Oberwellen belastet, die Ausgangsspannung ist mit der PWM Frequenz pulsweitenmoduliert. Die verwendeten Messinstrumente müssen also für diese Signalformen geeignet sein. Zur Not kann ein hochwertiges Dreheiseninstrument verwendet werden, welches ein entsprechend breites Spektrum abdeckt

Um jegliches Risiko für Personen, bzw.
Sachschäden auszuschließen ist für den Fall,
dass Unklarheiten in Verbindung mit dieser
Sicherheits- und Installationsanleitung bestehen,
oder einzelne Passagen nicht eindeutig
verstanden, bzw. interpretiert werden konnten, in
jedem Falle der Hersteller zu kontaktieren, und
zwar, bevor der Frequenzumrichter, bzw. die
Anlage mit dem Frequenzumrichter in Betrieb
genommen wird

EMV: Grundlagen und Tipps zur Installation

Die Frequenzumrichter der Serie E2100 sind elektrische Betriebsmittel und für den Einsatz in gewerblichen und industriellen Anlagen vorgesehen. Die Geräte sind nicht eigenständig in Betrieb zu nehmen, sondern sind Teil einer Anlage, und somit im Sinne der EMV Richtlinie nicht einzeln kennzeichnungspflichtig.

Der Maschinen, bzw. Anlagenbauer ist dazu verpflichtet, den Nachweis zu erbringen, dass alle, in der EMV Richtlinie geforderten Grenzwerte und Vorschriften eingehalten werden.

Die, in die Umrichter der Serie E2100 integrierten, von unabhängigen Instituten ausgemessenen Funkstörspannungsfilter reichen in der Regel aus, um die Grenzwerte einzuhalten.

Die Umrichter aus der Serie E2100 gehören zur EMV Kategorie C3 und sind daher für den Einsatz in zweiter Umbebung (nach EN61800-3) vorgesehen (Industrielle Anwendung, mit eigenem Trafo für die Versorgung).

Sollte eine Installation in erster Umbebung vorgesehen sein, so sind zusätzliche Filtermaßnahmen notwendig (Einsatz im Wohn/Gewerbebereich, Anschluss am öffentlichen Niederspannungsnetz)

EMV gerechte Installation

Einbau in geeigneten Schaltschrank aus Metall, dieser sollte nach Möglichkeit in einen Leistungs- und einen Steuerbereich unterteilt sein, ev. ist eine Schirmwand notwendig.

Alle Metallteile, Erdungsleitungen, Kabelschirme niederohmig verbinden, möglichst großflächig auf blanker Montageplatte.

Erdungs-/Potentialausgleichsleitungen mit min. 10mm² herstellen. Sternförmig an zentraler Schiene zusammenführen. Beachten, dass durch die Verwendung von Frequenzumrichtern und EMV Filtern die Ableitströme mehr als 3,5 mA betragen können, es sind deshalb geeignete Schutzleiterkonfigurationen vorzusehen:

Schutzleiter Querschnitt mindestens 10 mm² Cu Schutzleiter mit Überwachungseinrichtung, welche im Falle eines Fehlers selbständig abschaltet.

Einen zweiten Schutzleiter über getrennte Klemmen verlegen, welcher auch für sich allein die Kriterien eines Schutzleiters erfüllen muss.

Nach Möglichkeit geschirmte Leitungen verwenden, Kupferschirm, blank oder verzinnt, die Schirmwirkung des Stahlmantels von ummantelten Leitungen ist nicht ausreichend.

Schirm großflächig mir den Potentialausgleichschienen verbinden, geeignete Schellen verwenden, bzw. an den Durchführungsstellen ins Gehäuse durch geeignete Durchführungsstopfen aus Metall mit dem Gehäuse verbinden. Der Schirmmantel darf nicht verlängert werden.

Ev. notwendige externe Filter so nahe wie möglich an der Störquelle (Umrichter) montieren und großflächig mit der Montageplatte verbinden.

Generell sollten alle Leitungen so kurz wie möglich gehalten werden, verschiedene Leitungsgruppen sind getrennt zu verlegen, min. 15 cm Abstand. Dazu gehören: Netz/Versorgungsleitungen, Motorleitungen von Umrichtern, incl. Bremswiderständen, Steuerleitungen, Rückführungen/Gebersignale und Datenleitungen.

Ungeschirmte Leitungen möglichst verdrillen

Ungenutzte Reserveadern in Kabeln an beiden Enden mit dem Schirm verbinden

Geräte mit UL Zeichen: Zusatzinformationen

Folgende Informationen gelten für Geräte, bestimmt für Märkte, welche UL Zulassung erfordern. Diese Informationen müssen vollinhaltlich jedem zur Verfügung stehen, der die Geräte in den Markt bringt, diese installiert, in Betrieb nimmt oder anwendet.

UL Standards

The UL/cUL mark applies to products in the United States and Canada and it means that UL has performed product testing and evaluation and determined that their stringent standards for product safety have been met. For a product to receive UL certification, all components inside that product must also receive UL certification.

UL Standards Compliance

This drive has been tested in accordance with UL standard UL508C, File No. E363934 and complies with UL requirements. To ensure continued compliance when using this drive in combination with other equipment, meet the following conditions:

1)Do not install the drive to an area greater than pollution severity 2 (UL standard)

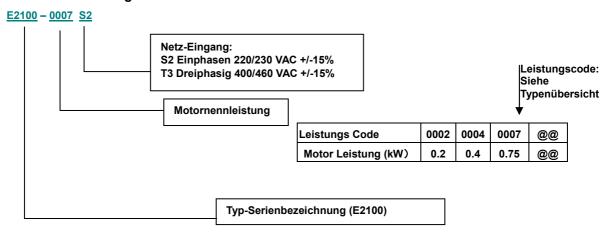
2)Installation and operating instructions shall be provided with each device.

The following markings shall appear in one of the following locations: shipped separately with the device; on a separable, self-adhesive permanent label that is shipped with the device; or anywhere on the device itself.

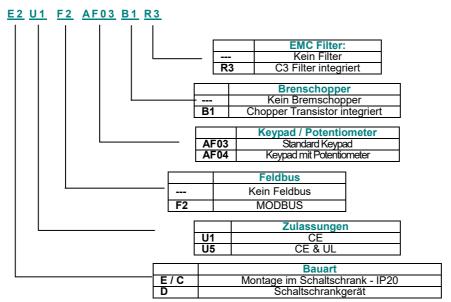
- a) Designation markings for each wiring diagram;
- b) Markings for proper wiring connections.
- c) "Maximum Surrounding Air Temperature 40°C." or equivalent;

- d) "Solid State motor overload protection reacts when reaches 150% of FLA" or equivalent;
 e) "Install device in pollution degree 2 environment." or equivalent;
 f) For Models of Frame Size(E2000-0007T3UBR;E2000-0011T3 UBR;E2000-0015T3 UBR;E2100-0022T3UBR): "Suitable For Use On A Circuit Capable Of Delivering Not More Than 5,000 rms Symmetrical Amperes, 480 Volts Maximum When Protected By made by COOPER BUSSMANN L L C Class T Fuse: JJS-15." or equivalent.
- For Models of Frame Size (E2000-0030T3UBR;E2000-0037T3UBR;E2000-0040T3UBR): "Suitable For Use On A Circuit Capable Of Delivering Not More Than 5,000 rms Symmetrical Amperes, 480 Volts Maximum When Protected By made by COOPER BUSSMANN L L C Class T Fuse: JJS-25." or equivalent.
- For Models of Frame Size (E2000-0055T3UBR; E2000-0075T3UBR): "Suitable For Use On A Circuit Capable Of Delivering Not More Than 5,000 rms Symmetrical Amperes, 480 Volts Maximum When Protected By made by COOPER BUSSMANN L L C Class T Fuse: JJS-35." or
- g) "Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes" or the equivalent;
- h) "CAUTION Risk of Electric Shock" should be provided, followed by instructions to discharge the Bus Capacitor or indicating the time required (5 minutes) for Bus Capacitor to discharge to a level below 50 Vdc;
- i) "Drives have no provision for motor over temperature protection" or equivalent;
- j) For used in Canada only: "TRANSIENT SURGE SUPPRESSION SHALL BE I NSTALLED ON THE LINE SIDE OF THIS EQUIPMENT AND SHALL BE RATED __480_ V (PHASE TO GROUND), 480 V (PHASE TO PHASE), SUITABLE FOR OVERVOLTAGE CATEGORY _III_, AND SHALL PROVIDE PROTECTION FOR A RATED IMPULSE WITHSTAND VOLTAGE PEAK OF _6 kV" or equivalent.

Field Wiring Terminal Markings - Wiring terminals shall be marked to indicate the proper connections for power supply and load, or a wiring diagram coded to the terminal marking shall be securely attached to the device:


- a. "Use 60/75°C CU wire" or equivalent;
- b. Required wire torque, type and range listed: see chapter 4) Empfohlene Leitungsquerschnitte Sicherungen Leistungsklemmen

Grounding - The wire connector intended for ground connection for field installed equipment, shall be clearly identified such as being marked "G", "GRD", "Ground", "Grounding", or equivalent or with the grounding symbol (IEC 417, Symbol 5019).


Tightening torque and wire section for field grounding wiring are marked adjacent to the terminal or on the wiring diagram.

2) Produktübersicht / Produktdaten

Produktbezeichnung

Optionen Code

Typenschild

Die nebenstehende Abbildung zeigt das Typenschild eines Gerätes aus der Serie E2100, 3-Phasen, 400V, Nennleistung 2,2 kW, Nennstrom 9A, mit folgenden Optionen: F2 (MODBUS), B (Bremschopper) R (integriertes EMC-Filter), Software rev. 5.40

	JS-Technik						
MODEL	E2100-	0040T3	OPTION	E2U1F	F2AF03B1R3		
INPUT	3 PH	AC 380~460 ± 1	5% V	50/60 Hz			
OUTPUT	3 PH	AC 0- INPL	IT V	9 A	4.0 kW		
(E IP20		E210040T31 sw no. 5.40	8216000 BS NO.				

Seriennummer: E2100-0040T3

2100-004013 18

Produktion Jahr

Produktion Monat

16000002 Kontrollnummer

Modell Code E2100 4.0 kW

E2100 4.0 kW 2018 3-Phasen 400V Februar

Mechanischer Aufbau

Es gibt grundsätzlich zwei verschiedene Gerätekonzepte:

Baugröße E1 – E6 / E7

Umrichter in der Leistungsklasse 0,2 bis 45 kW: POLYCARBONAT-Gehäuse, aufgebaut auf Kühlkörper, Bedienteil fest integriert (E1 – E6 nicht herausnehmbar, E7 abnehmbar)

Baugröße C51 - CB

Umrichter in der Leistungsklasse über 45 kW: Stahlblechgehäuse mit innen liegenden Leistung/Steuerklemmen und abnehmbarem Bedienteil - Baugröße

Aufbau eines E2100 Baugröße E2 Umrichters

Aufbau eines E2100 Baugröße E7 Umrichters

Technische Daten - Umrichter E2100

	Eingangsnennspannung	3-Phasen 380A 460V +/- 15% - 1-Phasen 230V +/- 15%				
Netzeingang	Netzfrequenz	44A .67 Hz				
	EMC Filter	Integriert für 2. Umgebung C3 - optionales C1 Unterbaufilter				
	Ausgangsspannung	0A AU-input				
	Ausgangsfreguenz	0A A650 Hz (500Hz für SLV)				
Ausgang	Frequenzauflösung	0.01 Hz				
	Überlastbarkeit	150% - 60 sec. / 10 Min				
	PWM Steuermodi	V/Hz - Modus SENSORLESS VECTOR (SLV) – mit Drehmoment / Drehzahlsteuerung Permanentmagnet Synchronmotoransteuerung				
	PWM Frequenz	0,8A 16 kHz (abhängig von Baugröße)				
	V/Hz Kurve	Linear, quadratisch, frei-programmierbare Kurve, V/Hz unabhängig über separaten Spannungssollwert				
I	Anlaufmoment	150% Nennmoment bei 0,5 Hz (im SLV Modus)				
Steuermodus	Drehmomentanhebung	Automatisch / Manuell				
Gtodormoddo	Motordatenerfassung	Manuelle Eingabe / Intelligente Autotuning-Funktion				
	Drehzahl Stellbereich	1:100 im SLV Modus				
	Drehzahlkonstanz	+/- 0,5% (SLV)				
	Drehmomentkonstanz	+/- 5% (SLV)				
	DC-Bremse	Einsatzschwelle, Dauer und Intensität frei konfigurierbar				
	Bremschopper	Choppertransistor integriert (<180 kW) (Bremswiderstände siehe Produkttabelle)				
Display	7 Segment Display – 4-Stellig	Für die Parametrierung und zur Anzeige verschiedener Betriebsparameter				
	Umrichtersteuerung - Start/Stop	Konfigurierbar: Über Klemmen / Bedienpanel / serielle Schnittstelle				
	Digitale Eingänge	8 (6) digitale Eingänge (HIGH/LOW konfigurierbar), Pulseingang				
	Drehzahl/Drehmoment Sollwertvorgabe	Potentiometer, Analogeingang (Klemmen), INC/DEC-Tasten, Pulseingang, serielle Schnittstelle				
	Analogeingänge	2 Analogkanäle 0A 10V, -10V/+10V, 0(4)20 mA (mit einstellbarem Offset, beliebig skalierbar und mathematisch verknüpfbar)				
I/O Kanäle und	Analoge Ausgänge	1 (2) Ausgänge, beliebig skalier- / zuordenbar (0A 10V, 0(4)20 mA)				
Steuerfunktionen	Digitale Ausgänge	1 (2) digitale Ausgänge (beliebig zuordenbare Funktionen)				
	Relais Ausgang	1 Umschaltkontakt, 2(5) A 230 V (an vielfältige Funktionen zuzuordnen)				
	Schnittstelle	Serielle Schnittstelle (MODBUS)				
		Tip-Betrieb, 12V / 50 mA Hilfsversorgung an Klemmen				
	Sonder- / Regelfunktionen	PI-Regelung / Pumpen Folgesteuerung, Master/Slave Steuerung				
	. 3	Fixfrequenzen, Zyklische Frequenzablauffunktion (programmierbar) Fangfunktion, Auto-Reset Funktion				
		Überspannung, Unterspannung				
Schutzfunktionen	Elektrische Schutzfunktionen	Überstrom, Überlast, Motor-Überlast, Kurzschluss				
mit Fehlerspeicher		Phasenfehler-Eingang, Motor-Phasenfehler				
renierspeicher	Thermische Schutzfunktionen	Übertemperatur Kühlkörper, Motor-Übertemperatur (über PTC/KLIXON), Motor I ² xt Überwachung				
	Anzeige	Remote Anzeige/Programmiereinheit - LCD Klartextdisplay (IP66)				
	Bremswiderstände	Hochlastwiderstände für Dauerbetrieb				
Optionen	Filter / Drosseln	PFC Eingangsdrosseln – dV/dt Ausgangsfilter - Sinusfilter				
	PC-Link Software (über MODBUS)	Konfigurations-, Steuerungs- und Diagnosetool, Parametersatzspeicherung				
	Kopierstick	Zur Parameterduplizierung und Parametersatzspeicherung				
	Schutzart	IP20 – (IP21 optional)				
Umgebungs-	Umgebungstempertaur	-10A A +50 °C				
Bedingungen	Feuchtigkeit	Max. 90 % nichtkondensierend, nichtkorrosiv				
3. 3	Aufstellungshöhe	1000 m - 1% Derating / 100m darüber				
	Vibration	Max. 0,5 g				
Leistungsbereich		0,2A A 400 kW				
Normen	Elektromagnetische Verträglichkeit	EN61800-3(2004)				
	Sicherheit	EN61800-5-1 2003				

Produkttypen und Baugrößen

	Frequenzumrichter 230V							
Modell	Nennleistung- Nennstrom	Eingangsstrom Effektivwert	Baugröße		Gewicht (kg)	Ausmaße (BxHxT - mm)	Bremschopper	Minimaler Wert Brems- widerstand
E2100-0002 S2	0,2 kW -1,5A	2,5A			1,2			
E2100-0004 S2	0,4 kW - 2,5A	5A	E4		1,2	90v420v42E	IN T	
E2100-0007 S2	0,75 kW - 4,5A	9A			1,3	80x138x135	INTEGRIERT	80 Ohm/200W
E2100-0015 S2	1,5 kW - 7A	15A			1,5		ERT	
E2100-0022 S2	2,2 kW - 10A	22A	E2		2,1	106x180x150		

	Frequenzumrichter 400V							
Modell	Nennleistung- Nennstrom	Eingangsstrom Effektivwert	Baugröße	Gehäuse	Gewicht (kg)	Ausmaße (BxHxT - mm)	Bremschopper	Minimaler Wert Brems- widerstand
E2100-0007 T3	0,75 kW - 2 A	2,4A	E1		1,3	106x180x150		
E2100-0015 T3	1,5 kW - 4 A	4,6A			1,3			120 Ohm/200W
E2100-0022 T3	2,2 kW - 6,5 A	7 A			2,0			120 OIIII/200VV
E2100-0030 T3	3,0 kW - 7.6 A	9A	E2		2,0	106x180x170		
E2100-0040 T3	4,0 kW - 9 A	11A]		2,1	138x235x152		
E2100-0055 T3	5,5 kW - 12 A	16A	E4		3,2			75 Ohm/500W
E2100-0075 T3	7,5 kW - 17 A	20A	E4		3,5	156x265x170		
E2100-0110 T3	11 kW - 23 A	29A			4,9			50 Ohm/1.000W
E2100-0150 T3	15 kW - 32 A	37A	E5		5,0	205x340x196	_	
E2100-0185 T3	18,5 kW - 38 A	45A			8,1			
E2100-0220 T3	22 kW - 44 A	54A	E6	8,3		INTEGRATE	25 Ohm/1.500W	
E2100-0300 T3	30 kW - 60 A	72A]		9,0	270x435x235	TE	
E2100-0370 T3	37 kW - 75 A	85A		45.0	260×480×245	0		
E2100-0450 T3	45 kW - 90 A	110A	E7		15,3	260x480x245		45 Ohm/5 000W
E2100-0550 T3	55 kW - 110 A	132A	C51		37	260×620×265		15 Ohm/5.000W
E2100-0750 T3	75 kW - 150 A	180A	C51		38	360x630x265		10 Ohm/5.000W
E2100-0900 T3	90 kW - 180 A	220A			52			0. Ohrr (4.0. 000)4/
E2100-1100 T3	110 kW - 220 A	264A	C61		54	410x765x300		8 Ohm/10.000W
E2100-1320 T3	132 kW - 265 A	320A	1		56			4 Ohm/20.000W
E2100-1600 T3	160 kW - 320 A	384A	C7		83	516x765x326		2 Ohrr /20 000M
E2100-1800 T3	180 kW - 360 A	430A	C8		100	560x910x342		3 Ohm/30.000W
E2100-2000 T3	200 kW - 400 A	480A	C0]	135	400×4240×205		
E2100-2200 T3	220 kW - 440 A	530A	C9		158	400x1310x385		
E2100-2500 T3	250 kW - 480 A	575A	CA]	163	E2Ev4240v200	0	<u>o</u>
E2100-2800 T3	280 kW - 530 A	635A	CA		193	535x1340x380	OPTION	OPTION
E2100-3150 T3	315 kW - 580 A	700A	CDO		204	600×4.402202	ž	N N
E2100-3550 T3	355 kW - 640 A	765A	CB0		214	600x1463x380		
E2100-4000 T3	400 kW - 690 A	830A	СВ		225	600x1593x380		

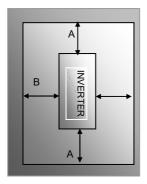
Bemerkung: Die Werte für die Eingangsströme dienen nur zur Orientierung und hängen von der Kurzschlußleistung des speisenden Netzes ab. Für Netz-Kurzschlussleistungen über 20 kA werden 5% Netzdrosseln empfohlen

3) Montage des Frequenzumrichters

Für die Montage des Umrichters sind auf jeden Fall die Sicherheitsvorkehrungen zu beachten. Siehe Kapitel 1) Allgemeine Installations- und Sicherheitshinweise für JS-Technik Frequenzumrichter Serie E2100

Montage im Schaltschrank

Entsprechend der Schutzklasse muss der Umrichter in einem geeigneten Schaltschrank untergebracht werden.


Die Montage muss vertikal erfolgen, alle verfügbaren Montagelöcher am Umrichter sind zu verwenden.

Eine Reihung mehrerer Umrichter in vertikaler Richtung ist zu vermeiden, falls absolut notwendig, so sind die doppelten vertikalen Montageabstände einzuhalten.

In horizontaler, bzw. vertikaler Richtung sind die angegebenen Mindestabstände nach untenstehender Tabelle unbedingt einzuhalten.

Für eine ausreichende Abfuhr der Verlustwärme aus dem Schaltschrank ist zu sorgen, um die vorgeschriebenen Umgebungsbedingungen einzuhalten.

Baugröße	Mindestabstände				
<37kW E1-E6	A≥150 mm B≥50 mm				
37kW - 132 kW E7-C61	A≥250 mm	B≥75 mm			
≥132 kW C7-CB	A≥300 mm	B≥100 mm			

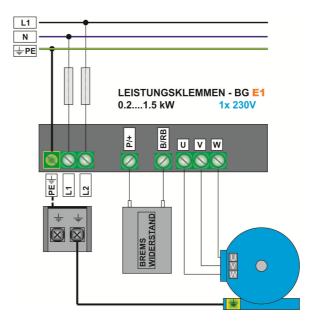
Abstände für die Montage im Schaltschrank

Lüfter: Die Umrichter der Serie E2100 werden über Zwangslüftung gekühlt. Die Funktion des Lüfters kann durch entsprechende Parameter gesteuert werden: Immer eingeschaltet (F702=2), Lüfter ein mit Motoransteuerung (F702=1), oder Temperatur gesteuert (F702=0)

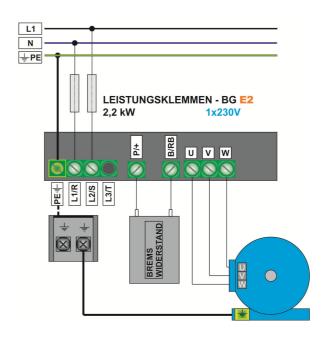
Bei (F702=3) läuft der Lüfter temperaturgesteuert mit kurzem Testlauf in regelmäßigen Zeitabständen

Wartung:

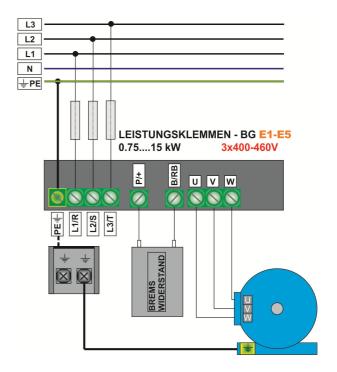
Unter der Voraussetzung dass alle vorgeschriebenen Umgebungs- und Betriebsbedingungen eingehalten werden, dass der Frequenzumrichter vorschriftsmäßig montiert, und entsprechend dieser Anleitung in Betrieb genommen wurde, und dass die Verwendung bestimmungsgemäß ist, ist kein außergewöhnlicher Verschleiß zu erwarten und es sind keine Wartungs-, bzw. Instandhaltungsmaßnahmen notwendig.

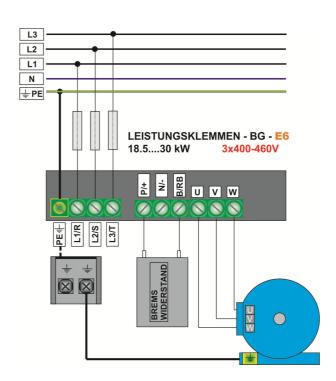

4) Elektrische Anschlüsse am Umrichter

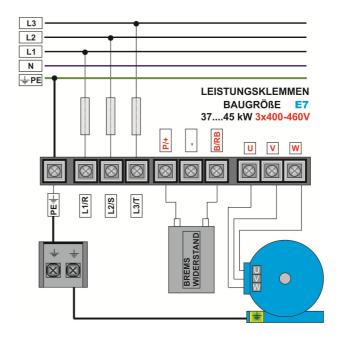
Der Umrichter verfügt über getrennte Steuer- und Leistungsklemmen, Die Verkabelung erfolgt mittels geeigneter Kabel, gemäß den allgemeinen Hinweisen im ersten Kapitel dieser Anleitung.

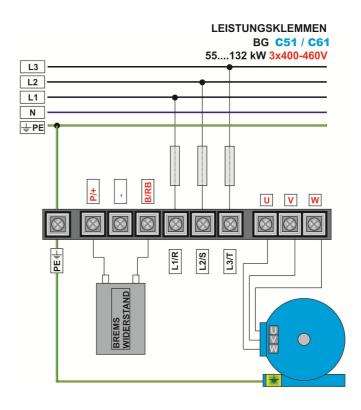

Leistungsklemmen:

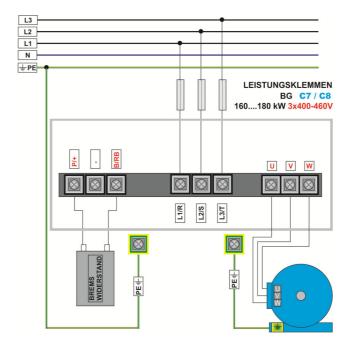
Je nach Umrichter-Baugröße und Anzahl der Eingangsphasen gibt es verschiedene Konfigurationen der Leistungsklemmen

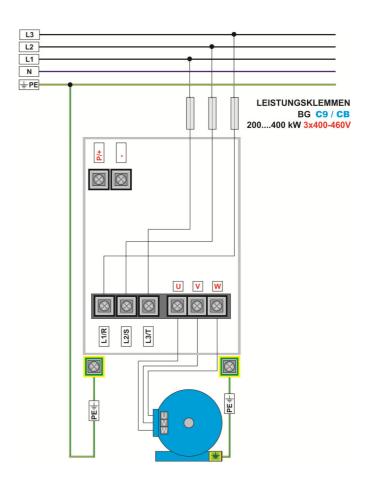

230V Einphasengeräte 0.2 – 1,5 kW – Baugröße E1


230 V Einphasengeräte 2,2 kW - Baugröße E2


400V Dreiphasengeräte 0.75 – 15 kW – Baugröße E1, E2, E4, E5


400V Dreiphasengeräte 18,5 – 30 kW – Baugröße E6


400V Dreiphasengeräte 37 – 45 kW – Baugröße E7


400V Dreiphasengeräte 55 – 132 kW – Baugröße C51/C61

400V Dreiphasengeräte 160 – 180 kW – Baugröße C7/C8

400V Dreiphasengeräte 200 – 400 kW – Baugröße C9/CB

Bremwswiderstand:

Der Anschluss des Bremswiderstandes erfolgt über geeignete Kabel mit entsprechendem Querschnitt. Die maximale Leitungslänge beträgt 2 Meter. Die Strombelastung errechnet sich aus dem Widerstandswert und der Bremseinsatzspannung von 800V

Der Mindestwiderstandswert ist den Tabellen aus dem Kapitel 2) Produktübersicht / Produktdaten zu entnehmen – dieser Mindestwiderstand darf auf keinen Fall unterschritten werden – Widerstandswerte bis zum Dreifachen dieses Mindestwertes sind zulässig.

Die Widerstände müssen der Anwendung entsprechend dimensioniert werden, vor allem was die **Dauer- und die Spitzenbelastung** angeht.

Geeignete Bremswiderstände für die verschiedensten Anwendungen können aus dem JS-Technik Zubehörprogramm bezogen werden

ACHTUNG!! Die gesamte dynamische Energie des Antriebssystems kann über die Bremswiderstände in Wärme umgewandelt werden – vor allem im Falle ungeeigneter Dimensionierung der Bremswiderstände, im Falle von Fehlfunktionen/Schäden am Umrichter oder bei Netzüberspannung kann es zu einer unzulässigen Erwärmung der Bremswiderstände kommen, es besteht Brand- und Verbrennungsgefahr. Es ist daher für geeignete elektrische/mechanische Schutzeinrichtungen zu sorgen.

Die Hinweise im Kapitel 1) Allgemeine Installations- und Sicherheitshinweise für JS-Technik Frequenzumrichter Serie E2100 sind zu beachten.

Für Schäden am Umrichter und/oder an der Anlage, durch die Verwendung ungeeigneter Bremswiderstände, übernimmt JS-Technik keine Haftung

Empfohlene Leitungsquerschnitte

Umrichter 230V							
Model	Nennleistung - Nennstrom	Eingangs- strom	Baugröße	Kabelquerschnitt Netzeingang/Motor			
E2100-0002 S2	0,2 kW -1,5A	2,5A		3x1,5 mm ²			
E2100-0004 S2	0,4 kW - 2,5A	5A	F1				
E2100-0007 S2	0,75 kW - 4,5A	9A	E1	3x2,5 mm ²			
E2100-0015 S2	1,5 kW - 7A	15A		3x4,0 mm ²			
E2100-0022 S2	2,2 kW - 10A	22A	E2	3x4,0 mm			

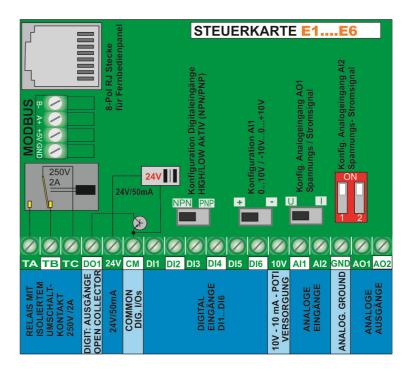
	Umrichter 400V						
Model	Nennleistung - Nennstrom	Eingangs- strom	Baugröße	Kabelquerschnitt Netzeingang/Motor			
E2100-0007	0,75 kW - 2 A	2,4A	E4	3x1,5 mm²			
E2100-0015	1,5 kW - 4 A	4,6A	E1	3x1,5 mm			
E2100-0022	2,2 kW - 6,5 A	7A					
E2100-0030	3,0 kW - 7.6 A	9A	E2	3x2,5 mm²			
E2100-0040	4,0 kW - 9 A	11A					
E2100-0055	5,5 kW - 12 A	16A	E4	3x4,0 mm²			
E2100-0075	7,5 kW - 17 A	20A	E4	3x4,0 mm			
E2100-0110	11 kW - 23 A	29A	E5	3x6,0 mm²			
E2100-0150	15 kW - 32 A	37A	E5	3x10 mm²			
E2100-0185	18,5 kW - 38 A	45A		3x16 mm²			
E2100-0220	22 kW - 44 A	54A	E6	3X16 mm			
E2100-0300	30 kW - 60 A	72A		3x25 mm²			
E2100-0370	37 kW - 75 A	85A	F-7	3x25 mm²			
E2100-0450	45 kW - 90 A	110A	E7	3x35 mm²			
E2100-0550	55 kW - 110 A	132A	CE4	3x35 mm²			
E2100-0750	75 kW - 150 A	180A	C51	3x50 mm²			
E2100-0900	90 kW - 180 A	220A		3x70 mm²			
E2100-1100	110 kW - 220 A	264A	C61	3x70 mm			
E2100-1320	132 kW - 265 A	320A		3x95 mm²			
E2100-1600	160 kW - 320 A	384A	C7	3x120 mm²			
E2100-1800	180 kW - 360 A	430A	C8	3X120 mm			
E2100-2000	200 kW - 400 A	480A	C0	3x150 mm²			
E2100-2200	220 kW - 440 A	530A	C9	3x185 mm²			
E2100-2500	250 kW - 480 A	575A	CA	3x240 mm²			
E2100-2800	280 kW - 530 A	635A	CA	3x24u mm			
E2100-3150	315 kW - 580 A	700A	CDO	3x300 mm ²			
E2100-3550	355 kW - 640 A	765A	CB0	3x300 mm			
E2100-4000	400 kW - 690 A	830A	СВ	3x400 mm²			

Steuerleitungen (alle Baugrößen): 0,75 mm²

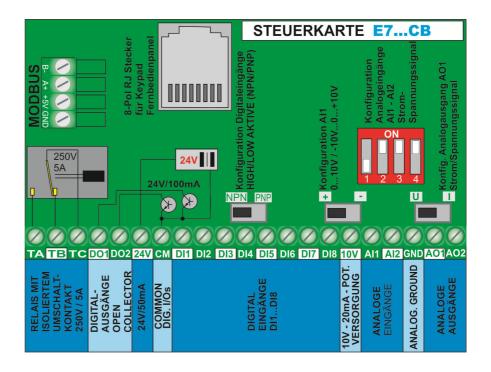
Erdverbindungen

Mindestquerschnitte der Leitung zur Erdungsklemme

Querschnitt Motorleitungen: S (mm²)	Mindestquerschnitt Erdungsleiter ₼/PE/E (mm²)
S ≤ 16	= S
16 <s 35<="" td="" ≦=""><td>min 16</td></s>	min 16
35 <s< td=""><td>Min S/2</td></s<>	Min S/2


Mindestquerschnitte der Erdungsanschlüsse am Chassis "G" "GND" "GROUND"

Querschnitt Motorleitungen: S (mm²)	Mindestquerschnitt Erdungsleiter ₼/PE/E (mm²)
S ≤ 16	= s AWG8 / 6,2


Steuerkarten und Steuerklemmen

Abhängig von der Umrichter-Baugröße gibt es zwei unterschiedliche Konfigurationen von Steuerkarten und Steuerklemmen

Umrichter BG **E1** – **E6** 0,20...30 kW

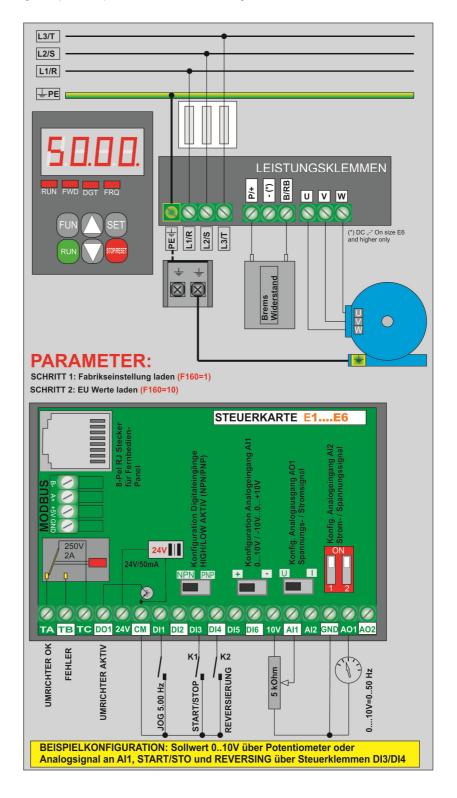
Umrichter BG **E7** – **CB** 37M .400 kW

Funktion der Steuerklemmen und werksseitige Konfiguration

Steuerklemmenblock

Klemme	Тур	Beschreibung	Eigenschaften	Parameter	Werkseinstellung
DO1	Digital/Analog-Ausgänge	Programmierbarer Digitalausgang 1	Open-Coll. Ausgang, max. 100mA-24V (bezogen auf CM) - Pulsausgang	(F301) (F303)	Meldung F=>0Hz
DO2		Programmierbarer Digitalausgang 2	Open-Coll. Ausgang, max. 100 mA-24V (bezogen auf CM (nur >30kW)	(F302)	Meldung F>0HZ
TA TB TC		Relaisausgang (potentialfreie Kontakte)	TC=COMMON TB=NORMAL CLOSED TA=NORMAL OPEN Max. Kontaktbelastung: Geräte 22kw und darunter: 2A/230VAC Geräte über 22 kW: 5A/230V	(F300)	Fehlermeldung
A01		Programmierbarer Analogausgang 1	Konfigurierbar für Spannungs- Stromsignal (Bezug auf GND) Für Stromsignal SWITCH auf "I" setzen	(F413F426) (F431)	Frequenzanzeige 0M 10V
A02		Programmierbarer Analogausgang 2	Stromsignal (Bezug auf GND)	(F427F430) (F432)	Motorstrom 0-20mA
10V	DC 10V	10V, bez. Auf Prozessor- GND	10V Stromversorgung, kann extern zur Versorgung von Potentiometer o. Ähnl. verwendet werden max. 20 mA		
Al1	Analog- Eingänge	Programmierbarer Analogeingang 1	Sollwert - Strom/Spannungseingang, hardwaremäßig konfigurierbar (siehe: Hardware und Hardware-Konfiguration der I/O Kanäle)	(F400-F405) (F418)	OM 10V
AI2		Programmierbarer Analogeingang 2	Sollwert - Strom/Spannungseingang, hardwaremäßig konfigurierbar (siehe: Hardware und Hardware-Konfiguration der I/O Kanäle)	(F406-F411) (F419)	020 mA
GND		Steuerklemmen Analog-Masse	Bezugspunkt für alle analogen I/O Signale, GND Steuerkarte. (Prozessor)		
24V	DC 24V	Isolierte 24V Stromversorgung	24V ± 1.5V, gegen CM; begrenzt auf 50mA für Versorgung digitaler I/Os		
DI1	Programmierbare Digitaleingänge	Programmierbarer Digitaleingang 1	HIGH/LOW aktiv, hardwaremäßig umschaltbar (siehe: Hardware und Hardware-Konfiguration der I/O Kanäle). Kann auch als schneller Pulseingang verwendet werden	(F316)	TIP Betrieb VOR
DI2		Programmierbarer Digitaleingang 2	HIGH/LOW aktiv, hardwaremäßig umschaltbar (siehe: Hardware und Hardware-Konfiguration der I/O Kanäle).	(F317)	NOTSTOP Extern
DI3		Programmierbarer Digitaleingang 3		(F318)	Klemme (FWD)
DI4		Programmierbarer Digitaleingang 4		(F319)	Klemme (REV)
DI5		Programmierbarer Digitaleingang 5		(F320)	RESET
DI6		Programmierbarer Digitaleingang 6		(F321)	Endstufen Freischaltung
DI7		Programmierbarer Digitaleingang 7		(F322)	START
DI8		Programmierbarer Digitaleingang 8		(F323)	STOP
СМ	сомм	Massepotential digital	Bezugspotential 24V Versorgung - Digitale I/Os		

RS485 Klemmenblock


GND	RS 485	GND	Microprocessor GND, analog GND		
+5V		5V, 50 mA	5 V Versorgung Microp. Level		
A+		Differentialsignal, positiv	Standard: TIA/EIA-485(RS-485) Schnittstellenprotokoll: MODBUS Bd.Rate: 1200/2400/4800/9600/19200/ 38400/57600	(F900-F904)	9600
B-		Differentialsignal, negativ			

Beispielkonfiguration für einen Umrichter 22 kW, 400V - Baugröße E6

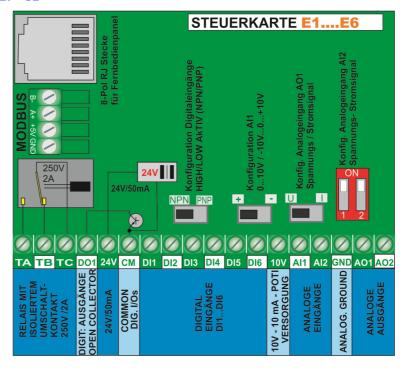
Falls Umrichterprogrammierung unbekannt: Werksparameter laden: F160 = 1 setzen Sollwertvorgabe analog (Potentiometer) über Analogeingang Al1: F203=1 setzen START/STOP – Drehrichtungssteuerung über Klemmensignale F208=2 setzen (Zweidrahtsteuerung)

"Umrichter OK" Meldung erfolgt über Relaiskontakt **TC/TA**: **F300=13** "Umrichter aktiv" Meldung über **DO1 F301=14** Frequenzanzeigeausgang ist **AO1** 0J 10V = 0-50 Hz: **F423=1**, **F431=0**

EU Werkseinstellung über (F160=10) enthält alle diese Einstellungen

5) Steuerhardware und Hardware-Konfiguration der I/O Kanäle

Die Konfiguration der Hardware I/O Kanäle erfolgt sowohl über Software, als auch über entsprechende Hardwareeinstellungen auf der Steuerkarte

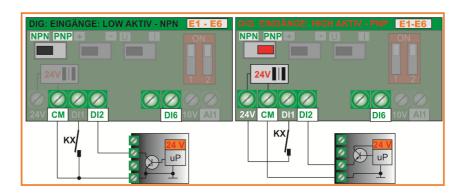

Für die Parametrierung via Software siehe die Kapitel:

- 10) Parametergruppe 300: Konfiguration digitale I/Os
- 11) Parametergruppe 400: Konfiguration der analogen I/Os

Es gibt zwei verschiedene Steuerkartenkonzepte:

Umrichter 0,2 - 30 kW: Baugröße E1 - E6 Umrichter 37kW - 400 kW: Baugröße E7 - CB

Steuerkarte Umrichter 0,2...30 kW **BG E1 - E6:**



Digitale Eingangskanäle: E1 - E6:

Die Umrichter BG E1-E6 verfügen über 6 digitale Eingänge DI1@.DI6: Die Funktionszuordnung erfolgt über die Parameter **F316@.F321** – Beschreibung siehe Kapitel *10) Parametergruppe 300: Konfiguration digitale I/Os* **DI1** fungiert auch als schneller Pulseingang, falls der Umrichter für Puls-Sollwert konfiguriert werden sollte.

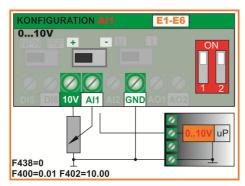
Achtung: Die Zuordnung einer Funktion kann nur an einen einzigen Digitaleingang erfolgen. Ist die Funktion bereits an einen anderen Eingang, als den gewünschten vergeben (z.B. über Werkseinstellung), so muss diese Eingangszuordnung zuerst auf 0 gesetzt werden.

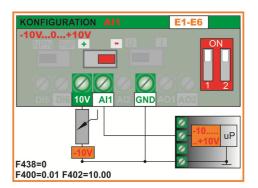
HIGH/LOW aktiv (PNP/NPN) Ansteuerungsmodus: Dieser wird über DIP-SWITCH NPN/PNP ausgewählt. Die Digitaleingänge sind von der normalen Steuermasse isoliert, die 24 V Hilfsversorgung kann für die Ansteuerung der Digitaleingänge im HIGH aktiv Modus verwendet werden. Bezugspunkt für die Digitalansteuerung ist immer CM

Werkseinstellung: NPN

Analoge Eingangskanäle: E1 - E6:

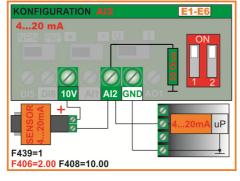
Die Geräte E2100 BG E1@E6 verfügen über 2 unabhängige Analogeingänge Al1 und Al2, jeweils mit einer Auflösung von 12 Bit.

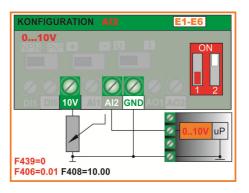

Die Anpassung an die verschiedensten Signalarten erfolgt sowohl durch Parameter, als auch durch entsprechende Hardwarekonfiguration der Steuerkarte.


Für die Softwaremäßige Parametrierung siehe: 11) Parametergruppe 400: Konfiguration der analogen I/Os

Al1 Spannungseingang: kann für 0@.10V oder -10V@0@+10V konfiguriert werden (Werkseinstellung 0...10V)

Al2 Spannungs-/Stromsignal: kann für 0@5V, 0@10V oder 0(4)...20 mA konfiguriert werden (4...20 mA über entsprechende Parametrierung – F406, F408) – (Werkseinstellung 0...20 mA)


Konfiguration Al1



Werkseinstellung: 0...10V

Konfiguration Al2

Werkseinstellung: 0...20mA

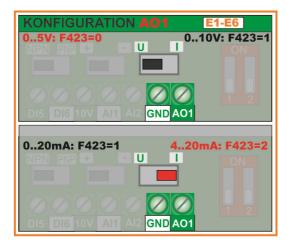
Eingangswiderstand für Spannungssignal: 10 kOhm Bürdewiderstand bei Konfiguration als Stromsignal: 50 Ohm

Digitale Ausgangskanäle: E1 - E6:

Umrichter der Serie E2100, BG. E1..E6 verfügen über einen Relaisausgang und einen OPEN COLLECTOR Digitalausgang – die Funktionszuordnung erfolgt über die Parameter F300 – F301.

TA-TB-TC Relaisausgang: Isolierter Umschaltkontakt, TC Zentralkontakt, mit TB verbunden, wenn Ausgang inaktiv, Kontaktbelastung max. 2A 230V **(F300)**

D01 Digitalausgang: OPEN COLLECTOR, bezogen auf **CM** - U/High=24V, Strom max. 100mA-Sink. **(F301)** Über Parameter **F303** kann der Ausgang D01 als Pulsausgang konfiguriert werden. Max. 50 kHz, U_{ss} =24V

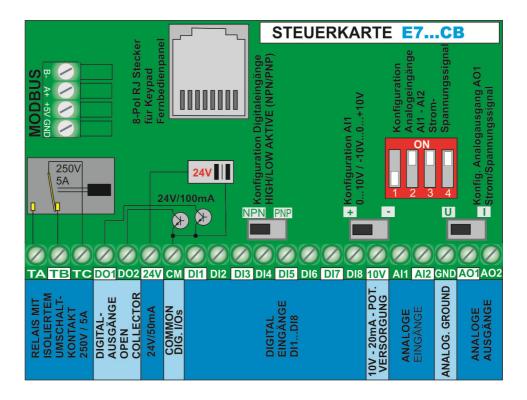

Analoge Ausgangskanäle: E1 - E6:

Umrichter der Serie E2100 BG. E1-E6 verfügen über zwei analoge Ausgangskanäle: AO1 und AO2

AO1 kann hardwaremäßig als Spannungs- oder Stromsignal konfiguriert werden Die Funktionszuordnung erfolgt über F431 Die Signalanpassung erfolgt über F423, die Bereichsanpassung über: F424 - F426

Siehe Kapitel: Parametergruppe 400

Für die Konfiguration von AO1 sind folgende Einstellungen auf der Steuerkarte notwendig:

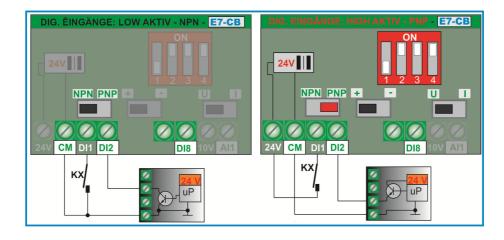


Werkseinstellung: 0...10V

AO2 ist fix als Stromsignal konfiguriert, die Funktionszuordnung erfolgt über F432 Die Signalanpassung erfolgt über F427, die Bereichsanpassung über:F428 - F430)

Werkseinstellung: 0...20mA

Steuerkarte Umrichter 37...400kW **BG E7 – CB:**



Digitale Eingangskanäle: E7 - CB:

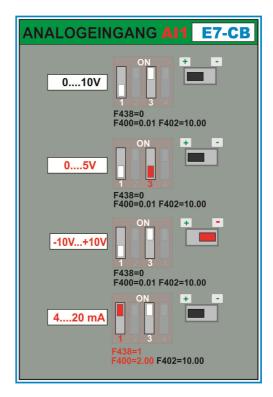
Die Umrichter BG E7-CB verfügen über 8 digitale Eingänge: DI1@.DI8: Die Funktionszuordnung erfolgt über die Parameter **F316@.F323** – Beschreibung siehe Kapitel *10) Parametergruppe 300: Konfiguration digitale I/Os* **DI1** fungiert auch als schneller Pulseingang, falls der Umrichter für Puls-Sollwert konfiguriert werden sollte

Achtung: Die Zuordnung einer Funktion kann nur an einen einzigen Digitaleingang erfolgen. Ist die Funktion bereits an einen anderen Eingang, als den gewünschten vergeben (z.B. über Werkseinstellung), so muss diese Eingangszuordnung zuerst auf 0 gesetzt werden.

HIGH/LOW aktiv (PNP/NPN) Ansteuerungsmodus: Dieser wird über DIP-SWITCH NPN/PNP ausgewählt. Die Digitaleingänge sind von der normalen Steuermasse isoliert, die 24 V Hilfsversorgung kann für die Ansteuerung der Digitaleingänge im HIGH aktiv Modus verwendet werden. Bezugspunkt für die Digitalansteuerung ist immer CM

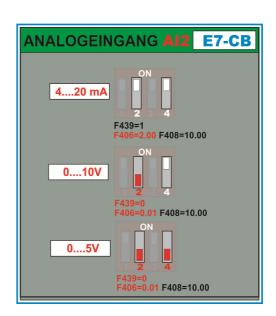
Werkseinstellung: NPN

Analoge Eingangskanäle: E7 – CB:


Die Geräte E2100 BG E7...CB verfügen über 2 unabhängige Analogeingänge Al1 und Al2, jeweils mit einer Auflösung von 12 Bit

Die Anpassung an die verschiedensten Signalarten erfolgt sowohl durch Parameter, als auch durch entsprechende Hardwarekonfiguration der Steuerkarte.

Für die Softwaremäßige Parametrierung siehe: 11) Parametergruppe 400: Konfiguration der analogen I/Os


Al1 - Spannungs-/Stromsignal: kann für 0@5V, 0@10V, -10V@0@+10V oder 0(4)...20 mA konfiguriert werden

Werkseinstellung: 0...10V

Al2 - Spannungs-/Stromsignal: kann für 0@5V, 0@10V oder 0(4)..20 mA konfiguriert werden

Werkseinstellung: 0....20 mA

Eingangswiderstand für Spannungssignal: 10 kOhm

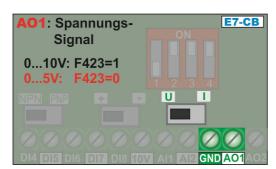
Bürdewiderstand bei Konfiguration als Stromsignal: 50 Ohm

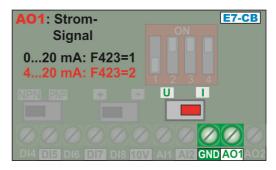
Digitale Ausgangskanäle: E7 – CB:

Umrichter der Serie E2100, BG E7...CB verfügen über einen Relaisausgang und zwei OPEN COLLECTOR Digitalausgänge – die Funktionszuordnung erfolgt über die Parameter F300 – F302.

TA-TB-TC Relaisausgang: Isolierter Umschaltkontakt, TC Zentralkontakt, mit TB verbunden, wenn Ausgang inaktiv, Kontaktbelastung max. 5A 230V (F300)

D01 Digitalausgang: Open Collector, bezogen auf CM - U/High=24V, Strom max. 100mA-Sink (F301). Über Parameter **F303** kann der Ausgang **D01** als Pulsausgang konfiguriert werden. Max. 50 kHz, U_{ss} =24V


DO2 Digitalausgang: Open Collector, bezogen auf CM - U/High=24V, Strom max. 100mA-Sink (F302).


Analoge Ausgangskanäle: E7 - CB:

Umrichter der Serie E2100 BG E7- CB verfügen über zwei analoge Ausgangskanäle: AO1 und AO2, denen verschiedene Funktionen zugeordnet werden können

AO1 kann hardwaremäßig als Spannungs- oder Stromsignal konfiguriert werden, die Funktionszuordnung erfolgt über F431, die Signalanpassung über F423 und die Bereichsanpassung über: F424 - F426 Sehe Kapitel: Parameter Gruppe 400

Für die Konfiguration von AO1 sind folgende Einstellungen auf der Steuerkarte notwendig:

Werkseinstellung 0...10V

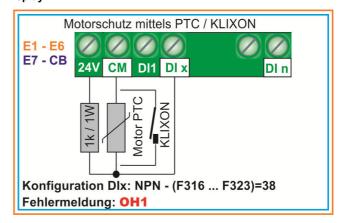
AO2 ist fix als Stromsignal konfiguriert, die Funktionszuordnung erfolgt über F432, die Signalanpassung über F427 und die Bereichsanpassung über die Parameter F428 - F430

Werkseinstellung: 0...20mA

Motorschutz über PTC/KLIXON - Gilt für alle Umrichter-Baugrößen E1 - E6 und E7 - CB

Es ist möglich für einfache Anwendungen und kurze Motorleitungen (<5m) die Digitaleingänge DI1@DI6(8) für PTC/NTC/KLIXON Auswertung zu konfigurieren.

Dafür ist eine entsprechende Beschaltung, gemäß untenstehendem Schema erforderlich. Der Widerstandswert hängt vom Wert des verwendeten PTCs ab, im Falle der Verwendung eines CLIXON wird ein Wert von 1 kOhm/1Watt empfohlen Jeder beliebige Digitaleingang kann für die Auswertung konfiguriert werden.


Die Ansprechschwelle beträgt ca. 4 V Spannungsabfall – also bei ca. 20V für NPN Konfiguration oder ca. 4 V für PNP Konfiguration.

Bei Auslösung erscheint die Fehlermeldung OH1 im Display

Zuordnung F316@F323: =37 für Schließer bzw. NTC =38 für Öffner, bzw. PTC

Schaltschwelle für PTC: In Konfiguration, entsprechend nebenstehendem Bild ca, 20V zwischen CM und Dlx, entspricht einem PTC Widerstandswert von ca. 6 kOhm

ACHTUNG!!! Es ist für eine ausreichende Isolation zwischen dem PTC-Kreis und dem Motorphasen zu sorgen.

Die Auswertemethode wird nur für kurze Motorleitungen (<5m) empfohlen

6) Bedienpanel - Konfiguration und Funktion

Das Bedienpanel dient zur Steuerung des Umrichters, zur Parametrierung und zur Anzeige von Betriebszuständen, Betriebsparametern, Parameterwerten und Fehlercodes.

Standardmäßig wird ein Panel ohne Potentiometer verbaut.

Nebenstehendes Bild zeigt die einzelnen Bereiche des Bedienpanels:

7 Segment Anzeige

LED-Statusanzeige

Tastenfeld

7-Segmentanzeige: über die Taste kann zyklisch zwischen den einzelnen, für die Anzeige konfigurierten Betriebsparametern und den Konfigurations-Parametern umgeschaltet werden.

Ein vorangestelltes *F* bedeutet, dass es sich um einen Konfigurationsparameter handelt

Im Fehlerfall wird der entsprechende Fehlercode angezeigt.

Ein blinkender Wert im STOP Modus zeigt die Endfrequenz (anliegender Frequenzsollwert) an, auf welche der Umrichter nach einem START Kommando hinlaufen wird.

Statusanzeige:

Über die LED-Statusanzeige werden die Betriebszustände des Umrichters signalisiert:

Tasten und zugehörige Funktion

Anzeige von Betriebsparametern und Fehlercodes

ANZEIGE	BEDEUTUNG
HF-0	TIPP Betrieb ist aktiviert
-HF-	RESET Prozess, Netz-EIN Selbsttest
ОС	
OC1	
OC2	
GP	
OE	
OL1 OL2	
OH	
OH1	
LU	
PF0	
PF1	
OH1	
CE	Fahlana da Barahadhan aida Kadid (Baranatan aran 700 Fahlada adiin and
CE1 FL	Fehlercodes, Beschreibung siehe Kapitel (Parametergruppe 700: Fehlerhandling und Schutzfunktionen)
AErr	
EP/EP2/EP3	
nP	
PG	
PCE	
EEEP	
ERR0 ERR1	
ERR2	
ERR3	
ERR4	
ERR5	
ERR6	
Er44	
OPEn	
ESP	Not-STOP über extenes Klemmensignal wurde ausgelöst
F152	Fvorangestellt = Parameter Nr. 152
10.00	Frequenzanzeige (FRQ=ON), Betriebsparameter, Parameterwert
50.00	Blinken im STOP Modus: Endfrequenz/Drehzahl nach START Befehl
0.	Totzeit bei Drehrichtungswechsel
A100 U100, b*.*, o*.*y, L*.*,H*.*	Betriebsparameter im RUN/STOP Modus: Motorstrom, Motorspannung, Regler-Istwert, Regler-Sollwert, Geschwindigkeit, KK-Temperatur u.s.w. – siehe: <i>F131 – F132</i>
STO	STO Funktion an der optionalen STO Platine wurde aktiviert

Fernbedien-Keypad (Option)

Umrichter 0,4...30kW – BG. E1-E6: Das Keypad ist fix im Umrichter integriert. ein Remotedisplay kann über den seitlichen 8 poligen Stecker (Cat.5 LAN Kabel) verbunden werden.

Ein geeignetes Remote-Display kann über das JS-Technik Zubehörprogramm bestellt werden: Type **A6-1-A Auschnitt im Schaltschrank: 70x120mm**

Umrichter 37...400kW – BG. E7 – CB: Die Anzeige- und Bedieneinheit ist in den Gehäusedeckel integriert, abnehmbar und über ein 8-poliges LAN Kabel mit der Steuerkarte verbunden. Diese Bedieneinheit kann auch über ein entsprechend längeres Kabel als Remote-Einheit verwendet werden, ein Montagerahmen ist im JS-Technik Zubehörprogramm verfügbar

Maximale Kabellänge 10m

4 Zeilen LCD Klartext Display

Für die Umrichter, Serie E2100 ist ein optionales 4 Zeilen Klartext Bedienteil erhältlich Dieses wird über ein 8 Pol LAN Kabel über den seitlichen RJ Stecker verbunden (Umrichter bis 30 kW), für Umrichter >30 kW kann dieses Bedienteil an Stelle des vorhanden herausnehmbaren Keypads verwendet werden.

Folgende zusätzliche Funktionen sind über dieses optionale Bedienteil verfügbar:

- Einfachere Umrichter Parametrierung, mit Klartext Parameterbeschreibung
- Anzeige von Betriebsparametern: Auswahl verschiedener Parameter für die Anzeige, Texteditor für die Parameter Beschreibung und die Parameter Einheit, Multiplikator für den Angezeigten Wert
- Abspeichern eines kompletten Parametersatzes in Bedienteil
- Kopieren von ganzen Parametersätzen von einem Umrichter zum anderen
- Klartext für Fehleranzeige und Fehlerspeicher

Das Bediengerät hat 3 verschiedene Ebenen:

Hauptebene:

Parameterebene:

Fehlerebene:

Dieses Keypad ist ideal als Fernbedieneinheit in Schutzklasse IP66, für komfortable Umrichterbedienung

Maximale Kabellänge 10m

7) Parametrierung

Für eine bessere Übersicht sind die Parameter in Gruppen aufgeteilt:

Parameter Typ	Parameter	Gruppe
BASIS Parameter	F100 - F160	100
Einstellung verschiedener Steuermodi, Sollwertquellen	F200 - F280	200
Zuordnung digitale I/O Klemmen - Diagnose	F300 - F340	300
Konfiguration analoge I/O Klemmen / Pulseingang	F400 - F473	400
Konfiguration Automatische Frequenzzyklussteuerung	F500 - F580	500
DC-Bremse, Strombegrenzung, Hilfsfunktionen	F600 - F677	600
Einstellung Diagnose- Schutzfunktionen	F700 - F760	700
Motorparameter	F800 - F880	800
Parameter serielle Schnittstelle	F900 - F926	900
PID Reglerparameter	FA00 - FA80	A00
Drehmomentsteuerung	FC00 - FC51	C00
Alternative Motorparameter	FE00 - FE60	E00
Diagnose	H000 - H019	000

Auswählen von Parametern, Ändern und Speichern:

Das Drücken der Taste FUN bewirkt ein zyklisches Umschalten des Anzeigeninhalts im Display.

Ein vorangestelltes *F* im Display bedeutet, dass man sich auf der Parametrierebene befindet.

Jetzt kann über die Tasten und azwischen den einzelnen Parametern umgeschaltet werden, wobei mit der Taste Finzelparametersprung, bzw. Parametergruppenumschaltung (100er Schritte) gewählt werden kann.

Das Symbol of bedeutet, dass man sich im Einzelparametermodus befindet.

Über die Taste SET wird der jeweilige Parameterinhalt aufgerufen.

Über die Tasten 🛦 und 🔻 kann der Parameterwert ev. geändert werden.

Durch neuerliches Drücken von SET wird der geänderte Wert in den Speicher übernommen

Parametertypen:

Read-only Parameter: Diese können nur eingesehen, aber nicht verändert werden – in der folgenden Beschreibung in **GRAU** dargestellt – ein Änderungsversuch führt zu **Err1**.

Dynamische Parameter: diese können sowohl bei laufendem Motor, als auch bei stillstehendem Motor geändert werden (Umrichter in RUN bzw. STOP Modus) – in der Parameterbeschreibung als **F**xxx dargestellt.

Statische Parameter: Parameter, welche nur bei stillstehendem Motor geändert werden können (Antrieb muss angehalten werden - Umrichter im STOP Modus) – in der Beschreibung als **Fxxx** dargestellt.

Falls eine Parameteränderung nicht erfolgreich war, und kein geänderter Wert in den Speicher übernommen wurde wird Err1 wird im Display angezeigt

Laden von Werksparametern: F160=1 (siehe in Parametergruppe 100- Basisparameter)

Einige Parameter werden durch Rüchsetzen auf Werkseinstellungen (über F160=1) nicht rückgesetzt: Diese werden in nachfolgender Parameterliste BLAU dartgestellt: Fxxx

Optionales 4 Zeilen LCD Keypad: Auswählen von Parametern, Ändern und Speichern:

Das Drücken der Taste Fun bewirkt den Wechsel in die Parametrierebene.

Die erste Zeile zeigt die Parametergruppe, die Bezeichnung wird in Zeile 2 angezeigt. In Zeile 3 wird die Parameternummer und der zugeordnete Wert angezeigt

Jetzt kann über die Tasten und zwischen den einzelnen Parametern umgeschaltet

werden, wobei mit der Taste die Dezimalstelle des Parameterzählers umgeschaltet werden kann.

Über die Taste wird der jeweils angezeigte Parameter ausgewählt und kann dann über die

Tasten und verändert werden.

Erneutes Drücken von seichert den geänderten Wert ab.

Über die Taste Fun wird die Parametrierebene wieder verlassen

Sprachauswahl erfolgt über Parameter F647

8) Parametergruppe 100: Basisparameter

F100 Passwort Eingabe Bereich: 0 – 9999 Werkspasswort: 8
--

F100 dient zur Eingabe des Passwortes bei aktiviertem Passwortschutz (F107=1). Bei Fehleingabe erscheint "Err1" im Display

F102 Umrichternennstrom (A)	Bereich: 1.0 – 400.0	Werkseingestellt - read only
F103 Nennleistung (KW)	Bereich: 0.2 - 400.0	Werkseingestellt - read only
F104 Umrichter Spannung/Phasen Code	1: Einphasen 230V 2: Dreiphasen 230V 3: Dreiphasen 400V 6: Dreiphasen 690V 11: Dreiphasen 1100V 12: Reserviert	Werkseingestellt - read only

F105 Software Version Nr.		Werkseingestellt, modellabhängig - read only
---------------------------	--	--

	Einstellmöglichkeiten: 0: Sensorless Vector (SLV)	
	1: CLV (mit Option)	
	2: V/Hz	
F106 Steuer-Algorythmus	3: Reserviert	Werkseinstellung: 2
	4: Reserviert	_
	5: Reserviert	
	6: Synchronmotor PMM Betrieb	

- 0: Sensorless Vector, kann nur in Verbindung mit einem einzelnen Motor verwendet werden
- 1: Closed-Loop Vector erfordert Hardware-Option
- 2: V/Hz Modus funktioniert auch bei mehreren parallel geschalteten Motoren
- 3: Simple-Vector Modus ist nur für Einzelmotorbetrieb geeignet
- 6: Betrieb von Permanent Magnet Synchronmotoren (Einzelmotor)

Achtung!!

Für ein korrektes Funktionieren im Sensorless Vector Modus, und im Permanentmotorbetrieb (F106=0/3/6) ist die exakte Eingabe aller Motorparameter erforderlich (Parametergruppe 800), und zwar über manuelle Eingabe oder über die AUTOTUNING Funktion (siehe *Parametergruppe 800 AUTOTUNING - MOTORDATENEINGABE*)

Für Antriebe mit quadratischer Kennlinie (Pumpen Lüfter) wird auf jeden Fall V/Hz-Modus empfohlen (F106=2) Umrichternennleistung und Motornennleistung sollten übereinstimmen Die Fangschaltung funktioniert nur im V/Hz Modus

F107 Aktivierung Passwortschutz	Einstellmöglichkeiten: 0: Kein Passwortschutz 1: Passwortschutz aktiviert 2: Aufgehoben für MODBUS	Werkseinstellung: 0
F108 Setzen des Passworts	Bereich: 0 - 9999	Werkseinstellung: 8

F109 Startfrequenz (Hz)	Bereich: 0.00 - 10.00 Hz	Werkseinstellung: 0.00 Hz
F110 Verweildauer auf Startfrequenz (sec.)	Bereich: 0.0 - 10.0 sec.	Werkseinstellung: 0.0 sec.

Der Umrichter startet, beginnend mit der Startfrequenz, falls die Endfrequenz kleiner als die Startfrequenz ist, so wird der Wert in **F109** nicht berücksichtigt.

Der Umrichter verweilt nach dem Startkommando für die in **F110** eingestellte Zeit auf der Startfrequenz und erreicht dann über die Hochlauframpe die eingestellte Endfrequenz. Verweildauer und Hochlaufzeit laufen separat ab.

Der Wert der Startfrequenz ist unabhängig und nicht durch die, in **F112** eingestellte Minimalfrequenz limitiert. Falls **F109** kleiner als Minimalfrequenz in **F112** ist, so wird der Umrichter mit den Parametern **F109** und **F110** starten. Nachdem der Umrichter hochgefahren ist gelten die Werte in **F111** und **F112** als Frequenzgrenzen.

Startfrequenz sollte kleiner als Maximalfrequenz (F111) gesetzt werden.

F111 Maximalfrequenz (Hz)	Bereich: F113 - 650.0 Hz	Werkseinstellung: 50.00Hz
F112 Minimalfrequenz (Hz)	Bereich: 0.00 - F113 Hz	Werkseinstellung: 0.50Hz

Die maximal erreichbare Ausgangsfrequenz wird durch Parameter F111 festgelegt

Die Maximalfrequenz sollte bei Betrieb in SENSORLESS VECTOR Modus auf 400 Hz begrenzt werden

Die minimale mögliche Ausgangsfrequenz entspricht Parameter **F112**, entspricht der Sollwert einer kleineren Frequenz, so hängt das Verhalten des Antriebes von Parameter **F224** ab: **F224=0**: Antrieb wird angehalten, **F224=1**: Antrieb läuft auf F-min weiter.

Achtung!! Ein Dauerbetrieb des Motors mit niedriger Drehzahl kann zu übermäßiger Erwärmung desselben führen, ev. Sind zusätzliche Kühlmaßnahmen (Zwangslüftung) vorzusehen

F113 Interne Sollwertvorgabe (Hz)	Bereich: F112 - F111	Werkseinstellung: 50.00 Hz
-----------------------------------	----------------------	----------------------------

Virtuelle interne Sollwertvorgabe. Kann durch die Sollwertquellen-Auswahl (F203, F204) genauso angewählt werden, wie die anderen Sollwertquellen (Analog, digital, Fixfrequenzen)

Wenn **F203/204 = 0:** Umrichter übernimmt nach einem **START** Kommando diesen Sollwert, mit den Tasten INC/DEC kann dieser Wert verändert werden

Nach einem **STOP** Kommando bestimmt der Parameter **F203**, ob die letzte Frequenz bei einem neuen **START** Kommando beibehalten wird.

Nach Netz-AUS bestimmt der Parameter **F220**, ob die letzte Frequenz für ein neues **START** Kommando gespeichert wird Jeder beliebige Digitaleingang kann verwendet werden, um die aktuelle Frequenz wieder auf den Wert in **F113** zurückzusetzen (Zuordnungscode: **54**).

Für Frequenzvorgabe über MODBUS wird ebenfalls der Parameter F113 benutzt und entsprechend laufend gesetzt.

F114 Hochlaufzeit 1 (sec.)		
F115 Tieflaufzeit 1 (sec.)	Baraiah: 0.40 2000 aaa	Morkocinetellungu Modellahhängig
F116 Hochlaufzeit 2 (sec.)	Bereich: 0.10 – 3000 sec.	Werkseinstellung: Modellabhängig
F117 Tieflaufzeit 2 (sec.)		

Insgesamt können 4 verschiedene Rampensätze über 2 Digitaleingänge ausgewählt werden (F114/115, F116/117, F277/278, F279/289), die Zuordnung an die Eingänge DI1...DI6(8), über (F316...F321...F323) erfolgt mittels Code 18/34.

F119 Bezug für Hoch/Tieflaufzeit	Auswahlmöglichkeiten: 0: 0 50.00Hz 1: 0 F-max	Werkseinstellung: 0
----------------------------------	--	---------------------

Wenn **F119=0** gesetzt, so gilt als Referenz für die Rampenzeiten die Spanne von 0 Hz bis 50 Hz, bei **F119=1** gilt die Spanne von 0 bis

F118 Knickfrequenz (Hz)	Bereich: 15.00 - 650.0	Werkseinstellung: 50.00Hz
-------------------------	------------------------	---------------------------

Frequenz, bei welcher die maximale Ausgangsspannung erreicht wird (entspricht der Eingangsspannung, falls Modulationsgrad **F152=100**% gesetzt ist)

Oberhalb der Frequenz in **F118** geht die U/F Kennlinie in eine horizontale Gerade über Unterhalb der Knickfrequenz arbeitet der Antrieb mit konstantem Drehmoment, oberhalb mit konstanter Leistung.

ACHTUNG!! Eine nicht korrekte Einstellung der Knickfrequenz kann zu Überhitzung und Schäden am Motor führen. Ein Abschalte des Umrichters, bedingt durch Überstrom ist möglich

F120 Totzeit während Reversierung (sec.)	Bereich: 0.00 – 3000 sec.	Werkseinstellung: 0.00 sec.
--	---------------------------	-----------------------------

Eine Aktivierung dieser Totzeit bedingt ein Verweilen bei **F=0** im Falle eines Drehrichtungswechsels, angezeigt durch **0.** im Display (im Falle der automatischen Frequenzablaufsteuerung hat dieser Parameter keinen Effekt).

Diese Funktion kann dazu dienen, um Last/Stromstösse bei Reversierung zu vermeiden

F122 Reversiersperre	Auswahl: 0: Reversieren erlaubt 1: Reversiersperre aktiv	Werkseinstellung: 0
----------------------	---	---------------------

Wenn **F122=1** gesetzt wird, so wird nur eine Drehrichtung zugelassen, unabhängig von Steuersignalen und anderen Bedingungen. Wird die Drehrichtungsumkehr angewählt, so stoppt der Umrichter.

Wenn Drehrichtungsvorgabe fix auf "rückwärts gesetzt", (F202=1) dann läuft der Umrichter nicht an, falls auch F122 aktiviert ist

Eine ev. aktivierte Fangschaltung wird den Motor mit 0.0 Hz abfangen

F123 Aktivierung Drehrichtungsumkehr	Einstellmöglichkeiten: 0: deaktiviert	Morkocinatelluna. 0
bei Kombinierter Sollwertsteuerung	1: aktiviert	Werkseinstellung: 0

Im Falle einer kombinierten Steuerung aus 2 Sollwertquellen wird durch diesen Parameter bestimmt, ob eine Drehrichtungsumkehr bei negativem Sollwertresultat möglich ist. Wenn nicht aktiviert, so erreicht die Ausgangsfrequenz bei negativem Frequenz-Resultat 0 Hz. (Parameter **F122=1** überschreibt diese Funktion.)

F124 Tipfrequenz (Hz)	Bereich: F112 - F111	Werkseinstellung: 5.00 Hz
F125 Hochlaufzeit - Tipbetrieb (sec.)	Bereich: 0.1 – 3000 sec.	Marka sinatallumu Baumi Gamakkiin sin
F126 Tieflaufzeit - Tipbetrieb (sec.)		Werkseinstellung: Baugrößenabhängig

Die Tippfrequenz kann auf 3 Arten aktiviert werden:

- 1: Über das standard Bedienpanel: bei gestopptem Umrichter Taste FUN so oft drücken bis HF-0 im Display erscheint, jetzt kann mit der Taste FUN im Tipbetrieb gearbeitet werden (Tipbetrieb über Tasten muss aktiviert sein F132=(1+x+x+x).
- 2: Remote 4-Zeilen LCD keypad: Die Multifunktionstaste ** kann für TIP FWD / TIP REV konfiguriert werden (F643)
- 3: Über Klemmensignale: Ein entsprechend zugeordneter digitaler Eingang aktiviert die Tipfrequenz: DI1I DI6(8) Konfiguration: F316M F323, Zuordnungscode 11/12

F127/F129 Sperrfrequenz A,B (Hz)	Bereich: 0.00 - 650.0	Werkseinstellung: 0.00 Hz
F128/F130 Sperrfrequenz Fenster A,B (Hz)	Bereich: ±2.5 Hz	Werkseinstellung: 0.0 Hz

Zum Vermeiden von Resonanzproblemen. Der Umrichter durchläuft zwar während der Hoch-Tieflaufphasen die gesperrten Frequenzbereiche, kann aber nicht in diesen Bereichen verweilen.

Konfiguration Displayinhalt im START MODUS / STOP MODUS:

Verschiedene Betriebsparameter können im Display angezeigt werden, zwei Sätze für **START/STOP** Modus können über **F131/132** definiert werden.

Die Taste rmöglicht ein zyklisches Durchschalten der einzelnen, zu Anzeige programmierten Betriebsparameter.

F131 Display: Auswahl Betriebsparameter, angezeigt im Status "START"	0: Ausgangsfrequenz / Parameterwert 1: Motordrehzahl 2: Motorstrom 4: Motorspannung 8: Zwischenkreisspannung 16: PID Regler-Istwert 32: KK-Temperatur 64: Zählerstand 128: Geschwindigkeit (linear) / aus Umrechnung 256: PID Regler Sollwert 512: Reserve 1024: Reserve 2048: Motorleistung	Werkseinstellung: 0+1+2+4+8=15
F132 Display: Auswahl Anzeige Betriebsparameter im "STOP" Status	4096: Motordrehmoment 8192: Reserve 0: Sollwert / Endfrequenz nach Rampe - Parameter(Fxxx) 1: TIPP Betrieb über Keypad - HF-0 2: Drehzahl Sollwert / Endwert nach Rampe (U/min) 4: Zwischenkreispannung (V) 8: PID Regler Istwert 16: Kühlkörper Temperatur 32: Zählerstand 64: PID Regler Sollwert 128: Reserve 256: Reserve 512: Drehmoment Sollwert 1024: Reserve 2048: Reserve	Werkseinstellung: 0+2+4=6

Standard 4 Ziffern LED Display

Die Auswahl eines Wertes 1, 2, 4, 8, 16, 32, 64....8192 zeigt jeweils den entsprechenden Betriebsparameter an. Sollten mehrere Betriebsparameter angezeigt werden, zyklisch umschaltbar, so muss die Summe aller einzelnen Werte in den Parameter **F131** eingegeben werden. So zeigt z.B. die Eingabe des Wertes 19 in Parameter **F131** die aktuelle Motordrehzahl, den Ausgangsstrom und den Regler-Istwert in Umrichter START Modus (1+2+16).

Im STOP Modus wird immer der aktuell anliegende Frequenzsollwert blinkend angezeigt

Optionales 4 Zeiliges LCD Bediengerät:

Ähnliches Konzept, wie standard LED Display, Betriebsparameter für START/ STOP mit zugehörigem Parameternamen werden in Zeile 1/2 und 3/4 angezeigt

Durch setzen von **F131** und/oder **F132** auf **0**, wird ein beliebig programmierbarer Betriebsparameter auf 2 Zeilen angezeigt, die Auswahl erfolgt durch **F645**.

Zusätzlich kann dafür der Parametername und ein Multiplikator ausgewählt werden (F763, F764, F765).

Für die erste Zeile kann ein beliebiger Text definiert werden, z.B. Firmenname (F762)

Parameter für die Anzeige eines errechneten Wertes

F133 Übersetzungsverhältnis Antrieb	Bereich: 0.10 - 200.0	Werkseinstellung: 1.00
F134 Raddurchmesser	0.001 – 1.000 (m)	Werkseinstellung: 0.001

Parameter für die Umrechnung Drehbewegung in lineare Geschwindigkeit (zur Anzeige im Display - Zuordnung F131: 128)

Abspeichern von kundenspezifischen Paramtersätzen:

Alle Parameter können in 2 verschieden Tabellen gespeichert werden.

Die Rüchspeicherung erfolgt durch F160: Auswahl 21 (Tabelle 1), bzw. 22 (Tabelle 2).

<i>F135</i> Speichern in Kundenparametersatz Tabelle	Auswahl: 1: Speichern in Tabelle 1 2: Speichern in Tabelle 2	Werkseinstellung: 0
--	--	---------------------

V/Hz Kurvenparameter:

Parametergruppe 8).

F136 Schlupfkompensation (im V/Hz Modus) Bereich: 0 - 10% Werkseinstellung: 0

Zur Kompensation von belastungsabhängiger Drehzahlabsenkung in V/Hz Betrieb. Antrieb muss sich im stabilen Bereich der M/n Kurve des Motors befinden.

F137 Spannungsanhebung im unteren Frequenzbereich und U/f Kurvenform (V/Hz)	Auswahl: 0: Linear 1: Quadratisch 2: Anwenderspezifisch (6 - Punkt) 3: Automatisch 4: Direkte Spannungsvorgabe	Werkseinstellung: 3
F138 Lineare Anhebung	Bereich: 1 - 20	Werkseinstellung: Umrichter-Baugrößenabhängig
F139 Quadratische Anhebung	Auswahl: 1 - 6	Werkseinstellung: 1

Für den Betrieb mit kleinen Frequenzen ist es notwendig den Spannungsabfall auf Grund des Motor-Statorwiderstandes zu kompensieren.

Wenn **F137=0** gewählt, so erfolgt eine **lineare** Spannungsanhebung, geeignet für konstantes Gegenmoment

Wenn **F137=1** gewählt, so erfolgt eine **quadratische** Anpassung, geeignet für Pumpen/Lüfter Antriebe mit quadratischer M-Kennlinie Wird **F137=2** gewählt, so ist es möglich eine anwenderspezifische Frequenz-/Spannung Kurve zu definieren

Wenn **F137=3** gewählt, so erfolgt eine automatische Schlupfkompensation Dafür ist die korrekte Eingabe aller Motordaten erforderlich, Der Statorwiderstand kann ev. über eine automatische Messprozedur bestimmt werden (Beschreibung siehe

kann ev. über eine automatische
Beschreibung siehe

F140 | Knickfrequenz

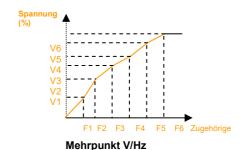
Spannungsanhebung linear/quadratisch/BOOST

F141

U A

16

ACHTUNG: F137=4 ist nur für Spezialanwendungen vorgesehen!!! Falsche Anwendung kann zu Motorschäden führen


F137=2: 12 Parameter müssen eingegeben werden, um eine anwenderspezifische V/Hz Kurfe zu definieren (F140 bis F151) .

F140 Anwenderdefinierte Frequenz F1	Bereich: 0 - F142	Werkseinstellung: 1.00
F141 Zugehörige Motorspannung V1	Bereich: 0 - 100%	Werkseinstellung: 4
F142 Anwenderdefinierte Frequenz F2	Bereich:F140 - F144	Werkseinstellung: 5.00
F143 Zugehörige Motorspannung V2	Bereich: 0 - 100%	Werkseinstellung: 13
F144 Anwenderdefinierte Frequenz F3	Bereich: F142 - F146	Werkseinstellung: 10.00
F145 Zugehörige Motorspannung V3	Bereich: 0 - 100%	Werkseinstellung: 24
F146 Anwenderdefinierte Frequenz F4	Bereich: F144 - F148	Werkseinstellung: 20.00
F147 Zugehörige Motorspannung V4	Bereich: 0 - 100%	Werkseinstellung: 45
F148 Anwenderdefinierte Frequenz F5	Bereich: F146 - F150	Werkseinstellung: 30.00
F149 Zugehörige Motorspannung V5	Bereich: 0 -100%	Werkseinstellung: 63
F150 Anwenderdefinierte Frequenz F6	Bereich: F148 - F118	Werkseinstellung: 40.00
F151 Zugehörige Motorspannung V6	Bereich: 0 - 100%	Werkseinstellung: 81

Bemerkung: V1<V2<V3<V4<V5<V6, F1<F2<F3<F4<F5<F6.

ACHTUNG!! Zu hohe Motorspannung bei niedrigen Drehzahlen kann zu Überhitzung / Zerstörung des Motors und zu Überstromabschaltung des Umrichters führen

8) Parametergruppe 100: Basisparameter

F140 BOOST Knickfrequenz (Hz)	Bereich: 0 – 5 Hz	Werkseinstellung: 1 Hz
F141 BOOST Intensität (%)	Bereich: 0 - 25%	Werkseinstellung: 4 %

Diese Funktion ermöglicht es, die Spannung im unteren Frequenzbereich zusätzlich anzuheben, um in der V/Hz Betriebsart ein höheres Anlaufmoment zu erreichen (wenn **F137=0** oder **F137=1**). Die Motorspannung folgt dieser Kennlinie, solange die, von **F137** festgelegte Motorspannung kleiner wäre

ACHTUNG!! Ein überhöhter BOOST Wert kann zu Überhitzung / Zerstörung des Motors und zu Überstromabschaltung des Umrichters führen

F152 Motorspannung bei Knickfrequenz (Modulationsgrad)	Bereich: 10 - 100 %	Werkseinstellung: 100 %
--	---------------------	-------------------------

Diese Funktion ermöglicht es, die maximale Ausgangsspannung des Umrichters zu begrenzen: 100% bedeutet, dass die volle, der Netzeingangsspannung entsprechende Spannung am Motor erreicht wird (400 Netz = 400V Motor)

F153 PWM Frequenz	Bereich: 800 Hz – 2.000, 4.000, 6.000, 10.000, 16.000 Hz	Werkseinstellung: Abhängig von Umrichter Baugröße
-------------------	---	--

	Auswahl: 0: deaktiviert	
F154 Netzspannungskompensation	1: aktiviert	Werkseinstellung: 0
	2: deaktiviert während Tieflaufphase	

Diese Funktion dient dazu, die Motorspannung unabhängig von Netzspannungsschwankungen zu machen. Wenn aktiviert, so kann die Tieflaufzeit durch den internen Regler verlängert werden, um das zu verhindern muss die Kompensation während der Tieflaufphase deaktiviert werden (**F154=2**).

ACHTUNG!! Diese Funktion kann zu einer Verlängerung der Tieflauframpe des Umrichters führen

F155 Digitale Vorgabe Sekundärsollwert	Bereich: 0M F111	Werkseinstellung: 0
F156 Polarität Sekundärsollwert	Bereich: 0 (FWD) oder 1(REV)	Werkseinstellung: 0
F157 Auslesen Sekundärsollwert		Read only
F158 Auslesen Polarität Sekundärsollwert		Read only

Feste interne Vorgebe für den Sekundärsollwert, falls dieser nicht über zweiten Analogkanal oder andere Quellen vorgegeben wird.

F159 "RANDOM" PWM Modulation	Auswahl: 0: konstante PWM 1: "RANDOM" modulierte PWM	Werkseinstellung: 1
------------------------------	--	---------------------

Wenn F159=0 gesetzt ist arbeitet der Umrichter genau mit der in F153 eingestellten PWM Frequenz, wird F159=1 gesetzt, so wird "RANDOM PWM" aktiviert.

ACHTUNG!! Werden SINUS Filter am Umrichterausgang verwendet, dann muss diese Funktion deaktiviert werden (F159=0)

Rücksetzen auf Werkseinstellungen:

	Auswahl: 0: Normalfunktion 1: Rücksetzen	
F160 Rücksetzen auf Werkseinstellungen	10: Rücksetzen auf EU Werte 11: Rücksetzen auf US Werte	Werkseinstellung: 0
	21: Rückspeichern Anwendertabelle 1 22: Rückspeichern Anwendertabelle 2	

Rücksetzprozedur:

F160 anwählen, SET drücken Parameterwert auf 1 setzen, SET erneut drücken

Werksseitig eingestellte Parameter werden geladen, nach ein paar Sekunden kehrt die Anzeige in F160 wieder auf 0 zurück

Achtung!! Nicht alle Parameter werden zurückgesetzt, diese sind in vorliegendem Manual mit blauen, fettgedruckten Parameternummern gekennzeichnet: (Fxxx)

9) Parametergruppe 200: Umrichter Ansteuerung

START / STOP - Drehrichtung:

<i>F200</i> Eingabe START-Befehl	Auswahl: 0: über Bedieneinheit 1: über Klemmen 2: Bedieneinheit + Klemmen 3: Serielle Schnittstelle 4: Bedieneinheit + Klemmen + Schnittstelle	Werkseinstellung: 4
<i>F201</i> Eingabe STOP-Befehl	Auswahl: 0: über Bedieneinheit 1: über Klemmen 2: Bedieneinheit + Klemmen 3: Serielle Schnittstelle 4: Bedieneinheit + Klemmen + Schnittstelle	Werkseinstellung: 4

F200 und **F201** konfigurieren die Art der START / STOP Steuerung des Umrichters: über die entsprechenden Tasten in der Bedieneinheit, über programmierbare Klemmen, über die Schnittstelle, oder als Kombination aller drei Kanäle. Steuerung erfolgt nicht durch statische Signale, Impulse reichen aus. **Gilt nur für den Fall, dass F208=0 gesetzt ist (=Werkseinstellung)**

Achtung: START / STOP Kommandos definiert über die Parameter F200 / F202 arbeiten mit dynamischen Signalen (Pulssteuerung). Aus Sicherheitsgründen ist es in der EU üblich, den Umrichter über statische Signale anzusteuern. Deshalb wird die START/STOP/REV Steuerung über 2/3 Draht Modus empfohlen (Parameter F208 entsprechend setzen, dieser Parameter überschreibt F200 und F201)

<i>F202</i> Drehrichtungs Vorgabe	Auswahl: 0: Vorwärts 1: Rückwärts 2: Gesteuert über Klemmeneingang 3: Über Fernbedien-Keypad 4: Über Fernbedien-Keypad mit NETZ-AUS Speicher	Werkseinstellung: 0
--------------------------------------	--	---------------------

Wenn keine Drehrichtungsvorgabe aus anderer Quelle vorhanden ist, so wird die Drehrichtung nur durch diesen Parameter bestimmt, z.B. bei Frequenzsteuerung über Tastatur

lst eine andere logische Vorgabe für die Drehrichtung vorhanden, so ist das Resultat die logische Verknüpfung beider Drehrichtungsvorgaben

Im Falle der automatischen zyklischen Ablaufsteuerung (F500=2) ist dieser Parameter unwirksam

Auswahl der Sollwertquelle:

F203 Primäre Sollwertquelle "X"	Auswahl: 0: interne Sollwertvorgabe (über F113) mit Abspeicherung 1: Analogeingang Al1 2: Analogeingang Al2 3: Pulseingang Dl1 4: Fixfrequenzen, Steuerung über Klemmen 5: wie 1, (über F113) aber ohne Abspeicherung 6: Reserviert 7: Reserviert 8: Reserviert 9: PID Regler Ausgang	Werkseinstellung: 0
	9: PID Regler Ausgang 10: über MODBUS Vorgabe	

F203=0 bedeutet, dass die, in **F113** eingegebene Frequenz erstmalig nach einem Startbefehl angefahren wird, danach ist es möglich durch die Tasten oder über entsprechend konfigurierte digitale Eingänge die Frequenz zu verändern (Motorpotifunktion). Nach einem STOP Befehl wir die zuletzt gefahrene Frequenz abgespeichert. Sollte auch eine Speicherung der zuletzt gefahrenen Frequenz nach dem Ausschalten des Umrichters erwünscht sein, so kann dies über den Parameter **F220** konfiguriert werden.

F203=1, bzw. **F203=2** bedeutet Sollwertvorgabe über die entsprechenden Analogkanäle. Diese können für 0...10V, -10V...+10V, oder 0(4)...20 mA (an50 Ohm) konfiguriert werden. Konfiguration über entsprechende Kodierschalter an der Steuerkarte (siehe Kapitel: *5 Hardware und Hardware-Konfiguration der I/O Kanäle*)

F203=3: Sollwertvorgabe über Impulse. Max. 50 kHz, ausschließlich über Digitaleingang DI1

F203=4: Bis zu 16 Fixfrequenzen, Auswahl über Digitaleingänge: DI1...DI6(8)

F203=5: Analog zu "0": Interne Sollwertvorgabe (F113), jedoch keine Abspeicherung bei STOP

F203=9: Frequenz wird durch Reglerausgang vorgegeben (für Applikationen mit REGLERBETRIEB)

F203=10: Sollwertvorgabe über Serielle Schnittstelle. (F113 wird über MODBUS gesetzt/geändert - siehe auch Param. F219)

	Auswahl: 0: interne Sollwertvorgabe (F155)	
	1: Analogeingang Al1	
F204 Sekundäre	2: AnalogeingangAl2	
Sollwertquelle	3: Pulseingang	Marka sinatallum nu O
	4: Fixfrequenz Steuerung über Klemmen	Werkseinstellung: 0
"Y"	5: Wie 0, aber ohne Abspeicherung	
	6: PID Regler	
	7: Potentiometer im Bedienpanel (Al3)	

Dieser sekundäre Sollwertkanal hat im Prinzip die gleiche Funktion, wie der Primäre "X", wenn er alleine verwendet wird, andererseits kann er mit dem primären Sollwerkanal über verschiedene Funktionen verknüpft werden – siehe **F207**.

Wenn **F204=0**, gilt der Wert in Parameter **F155** als Startwert, wenn der sekundäre Sollwert unabhängig verwendet wird; die Drehrichtungsvorgabe in **F156** ist in diesem Falle irrelevant

Ist F207=1, bzw. F207=3 gesetzt, so gelten die Werte in F155 und F156 für den sekundären Sollwert

Wenn einer der Analogkanäle Al1, oder Al2 als sekundäre Sollwertquelle konfiguriert wird, so kann der Bereich über F205 und F206 abgegrenzt werden

Wenn das Potentiometer im Bedienpanel ausgewählt wird, so können für den primären Sollwert nur Fixfrequenzen oder MODBUS konfiguriert werden

Primärer und sekundärer Sollwert dürfen nicht über den gleichen Kanal konfiguriert werden

F205 Bezug für die Bereichseinstellung sekundärer Sollwert über Al1, bzw. Al2	Auswahl: 0: bezogen auf F-max 1: bezogen auf primären Sollwert "X"	Werkseinstellung: 0
F206 Bereich sekundärer Sollwert "Y" (%)	Bereich: 0O .100 %	Werkseinstellung: 100

Wenn kombinierte Sollwertsteuerung verwendet wird, so wird bei Vorgabe des sekundären Sollwertes über Analogkanäle die Relation dieses Wertes zum ausgewählten Bezugswert über die Parameter **F205** und **F206** bestimmt

Frequenzvorgabe als Kombination von primärem und sekundärem Sollwert

F207 Ausgangsfrequenz als Kombination von primärem ("X") und sekundärem ("Y") Sollwert
--

Wenn F207=1: X+Y, die Summe wird verwendet.

Wenn **F207=3:** X oder (X+Y), primärer Sollwert oder die Summe aus primärem und sekundärem Sollwert kann über Klemmen angewählt werden.

Wenn **F207=4:** Fixfrequenzen sind die primäre Sollwertquelle, diese haben Vorrang über die, analog vorgegebene sekundäre Quelle (Konfiguration macht nur Sinn für F203=4 und F204=1)

Wenn **F207=5:** gesetzt, so ist die Ausgangsfrequenz bestimmt durch die Differenz zwischen primärem und sekundärem Sollwert Wenn **F207=6:** gesetzt, dann entspricht die Ausgangsfrequenz: X+X(F206-50%)*F205

Wenn **F207=7:** Fixfrequenzen sind die primäre Sollwertquelle (**F203=4**), diese haben Vorrang über die, in **F155** gesetzte Frequenz

Zwei / Dreidrahtsteuerung für START – STOP - DREHRICHTUNG:

Dieser Modus wird zur Umrichtersteuerung in EU empfohlen

Die Parameter F200, F201, F202 werden in diesem Falle ignoriert (wenn F208>0)

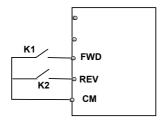
F208 Aktivierung Modus Zwei/Dreidraht Steuerung für START/STOP und Drehrichtung

Auswahl: 0: Deaktiviert

- 1: Zweidraht, Typ 1 (statisch)
- 2: Zweidraht Typ 2 (statisch)
- 3: Dreidraht Typ 1 (Impuls/Tastensteuerung)
- 4: Dreidraht Typ 2 (Impuls/Tastensteuerung)
- 5: Pulssteuerung (dynamisch)

Werkseinstellung: 0

Funktion der verschiedenen Varianten:

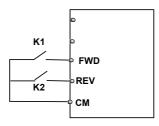

"FWD", "REV" und "X" sind die fiktiven Klemmensignale, diese können einem der digitalen Eingänge DI1...DI6(8) über die Parameter F316...F323 zugeordnet werden

Zuordnungscodes: FWD=15, REV=16, X=17 - siehe Kapitel: Parametergruppe 300 - Konfiguration Digitale I/O

F208=1: Zweidraht Typ 1

K1=START VORWÄRTS (default an DI3)

K2=START RÜCKWÄRTS (default an DI4)


Wahrheitstabelle

K1	K2	
0	0	Stop
1	0	Vorwärts
0	1	Rückwärts
1	1	Stop

F208=2: Zweidraht Typ 2

K1=START (default an DI3)

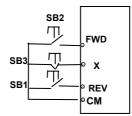
K2=DREHRICHTUNG (default an DI4)

Wahrheitstabelle

K1	K2	
0	0	Stop
0	1	Stop
1	0	Vorwärts
1	1	Rückwärts

F208=3: Dreidraht Typ 1

Puls/Tastensteuerung:

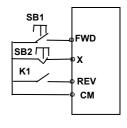

FWD(SB2)=START-Impuls Vorwärts

FWD=Schließer

REV(SB1)=START-Impuls Rückwärts

REW= Schließer

X(SB3)=Löschimpuls (STOP) **X=Öffner**


Puls/Tastensteuerung:

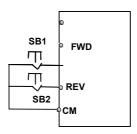
F208=4: Dreidraht Typ 2

FWD(SB1)=START-Impuls FWD=Schließer

X(SB2)=Löschimpuls (STOP) X=Öffner

K1=Drehrichtungsvorgabe

F208=5: Dreidraht Typ 3


Puls/Tastensteuerung

FWD (SB1) Impuls STARTvorwärts/STOP

FWD= Schließer/Öffner

REV (SB2) Impuls START rückwärts/STOP

REV= Schließer/Öffner

Parametergruppe 200: Umrichter Ansteuerung

AUSWAHL STOP Modus:

	Auswahl: 0: STOP kontrolliert über Tieflauframpe	
<i>F209</i> Auswahl "STOP" Modus	1: Freier Auslauf – Endstufenfreischaltung	Werkseinstellung: 0
	2: Über DC Bremse	

Wenn **F208=1**: STOP Kommando schaltet die Endstufe frei, der Antrieb läuft über das Trägheitsmoment aus Wenn **F208=2**: STOP Kommando startet DC Bremszyklus (Parameter **F600**, **F603**, **F605**, **F656** - siehe Parametergruppe 600)

Achtung: Im Falle des DC Bremsbetriebes wird die gesamte kinetische Energie im Rotor des Motors umgesetzt, welcher sich dabei entsprechend erwärmt. Ein zyklischer Betrieb mit DC Bremsung, bzw. das Abbremsen großer Trägheitsmomente kann zu Schäden am Motor führen

Motorpotentiometer Steuerung:

F210 Frequenzschritt bei Motorpoti Steuerung über Tasten, bzw. Klemmensignale	Bereich: 0.01 - 2.00 Hz	Werkseinstellung: 0.01 Hz
F211 Frequenzänderungsgeschwindigkeit Motorpoti über Tasten bzw. Klemmen	Bereich: 0.01 - 100.0 Hz/sec.	Werkseinstellung: 5.00 Hz/sec

Wenn F203=0/5: Startfrequenzvorgabe in F113 – Abspeicherungsoption bei Netz-Aus über F220

E242 Drobrightungschangisharung (bei E209-2)	Auswahl: 0: deaktiviert	Morko sinotallunau 0
F212 Drehrichtungsabspeicherung (bei F208=3)	1: aktiviert	Werkseinstellung: 0

Wenn aktiviert, dann wird die Drehrichtung bei Dreidrahtsteuerung Typ 1 nach dem STOP Signal abgespeichert

ACHTUNG: Mit F212=1 ist ein automatischer Anlauf des Antriebes nach dem Netzeinschalten möglich

F213 Autostart nach Netzeinschalten	Auswahl: 0: deaktiviert 1: aktiviert	Werkseinstellung: 0
F214 Autostart nach AUTO-RESET	Auswahl: 0: deaktiviert 1: aktiviert	Werkseinstellung: 0
F215 Autostart Verzögerung (sec.)	Bereich: 0.1O 3000.0 sec.	Werkseinstellung: 60.0

Wenn **F213** aktiv gesetzt ist, dann wird der Umrichter nach Netzeinschalten, und nach Ablauf der Verzögerungszeit **(F215)** mit derselben Frequenz und Drehrichtung, wie von dem Ausschalten, weiterlaufen. Falls **F220=0** gesetzt ist, dann wird die in **F113** eingestellte Frequenz übernommen, falls keine andere Sollwertquelle aktiviert ist

Gilt für dynamische Startkommandos, (Dreidrahtsteuerung) die Funktion hat keinen Einfluss, wenn **F208=1/2** gesetzt Wenn **F214** aktiv gesetzt wird, dann erfolgt im Fehlerfalle nach der in **F217** eingestellten Zeit ein automatischer Fehler-Reset, danach startet der Umrichter automatisch nach Ablauf der in **F215** eingestellten Verzögerungszeit. Autoreset mit Autostart nach Fehler arbeitet nur für Fehler, welche im "START" Modus auftreten, im STOP Modus erfolgt nur ein Fehler-Reset

Wird **F214= 0** gesetzt, so erfolgt kein automatischer Fehler-Reset. Im Fehlerfalle wird der Fehlercode im Display angezeigt, manuelles Rücksetzen ist notwendig.

F216 Anzahl der Fehler-Reset-Versuche	Auswahl: 0 - 5	Werkseinstellung: 0
F217 Verzögerung für Fehlerreset	Bereich: 0.0 - 10.0 sec.	Werkseinstellung: 3.0 sec.

F280 Tieflaufzeit 4 (sec.)

Achtung: Das Aktivieren der Funktionen AUTOSTART / AUTORESET kann zu einem unerwarteten Anlauf der Antriebes führen.

F219 EEprom Speicherschutz unter MODBUS Steuerung	Auswahl: 0: deaktiviert 1: aktiviert	Werkseinstellung: 1
---	---	---------------------

Wenn **F219** aktiviert ist, dann werden Werte, welche über MODBUS eingegeben werden nur im RAM gespeichert und gehen bei Netzausfall verloren.

Für Drehzahlsteuerung über MODBUS (kontinuierliche Änderung von F113), wird empfohlen den EEprom Speicherschutz zu aktivieren (F219=1).

F220 Abspeichem der aktuellen Frequenz / Drehrichtung bei Netz-AUS oder im Fehlerfalle		Auswahl: 0: deaktiviert 1: aktiviert	Werkseinstellung: 0
Gilt bei interner Sollwertvorgabe über F1	13 (bzw. F155 – F156	3) (Motorpoti)	
F222 Abspeichern Zählerwert im Fehlerfalle Netz-AUS	oder bei	Auswahl: 0: deaktiviert 1: aktiviert	Werkseinstellung: 0
F224 F-min Handling Auswahl: 0: f< 1: f<		f <f-min: stop<br="">f<f-min: f-r<="" läuft="" mit="" td="" weiter=""><td>min Werkseinstellung: 0</td></f-min:></f-min:>	min Werkseinstellung: 0
F229 Reserviert	Auswahl: 0	.16	Werkseinstellung: 2
F277 Hochlaufzeit 3 (sec.)			
F278 Tieflaufzeit 3 (sec.)		1 w	Manka sin stallen av
F276 Heliaulzeit 3 (Sec.)		Bereich: 0,1 - 3000sec.	Werkseinstellung:

Auswählbar analog zu Hoch/Tieflaufzeit 1/2 über Klemmensignale

10) Parametergruppe 300: Konfiguration digitale I/Os

Folgende digitale I/Os sind auf Umrichtern der Serie E2100 vorhanden:

I/O	Umrichter BG E1-E6 (bis 30 kW)	Umrichter BG E7-CB (über 30 kW)
Digitale Eingänge	6 (DI1; DI6)	8 (DI1; DI8)
Digitale Ausgänge	1 (DO1) Open Collector 100 mA / 24 V	2 (DO1, DO2) Open Collector 100 mA / 24 V
Relaisausgang	1 Umschaltkontakt 2 A 230V	1 Umschaltkontakt 5 A 230V
Pulseingang	DI1 konfigurierbar als Pulseingang	DI1 konfigurierbar als Pulseingang

Die Hardware-Konfiguration erfolgt entsprechend Kapitel: 5) Steuerhardware und Hardware-Konfiguration der I/O Kanäle

Über die Parameter F300-F302 (für Ausgänge) und F316-F323 (für Eingänge) können den digitalen I/Os die verschiedensten Funktionen frei zugeordnet werden

Funktionszuordnung digitale Ausgänge:

F300 Relais	Zuordnung Funktionen: 0;59	Werkseinstellung: 1 (Fehler)
F301 DO1 Digitalausgang 1	untenstehende Tabelle zeigt die	Werkseinstellung: 14 (Umr. aktiv)
F302 DO2 Digitalausgang 2	verschiedenen Funktionen	Werkseinstellung: 5 (Umr. START)

Wert	Funktion	Beschreibung
0	Keine Funktion	Dem Ausgang ist keine Funktion zugeordnet
1	Umrichterfehler	Im Fehlerfalle wird der Ausgang aktiviert
2	Frequenzschwelle 1	Ausgang wird aktiviert bei Erreichen der Frequenzschwelle, programmierbar, incl.
3	Frequenzschwelle 2	Hysterese über die Parameter F307 , F308 , F309
4	Endstufensperre	Stopsignal mit Endstufensperre liegt an (Antrieb läuft frei aus)
5	Umrichter Betrieb -1	Umrichter befindet sich im "START" Modus – Motor läuft (Frequenz>0)
6	Reserviert	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
7	Rampenumschaltung	Signalisiert, dass auf den zweiten Rampensatz umgeschaltet wurde
8	Zählerende erreicht	Der programmierbare interne Zähler hat den in F314 vorgewählten Wert erreicht
9	Zähl-Bereich erreicht	Der interne Zähler befindet sich in dem von F315 und F314 eingegrenzten Bereich
10	Warnung Umrichter Überlast	Aktivierung bei Umrichter-Überlast, nach Erreichen der halben, bis zur Überlastabschaltung vorgesehenen Zeit. Wird gelöscht durch Lastreduktion, oder bei Überlastabschaltung (OL1)
11	Warnung Überlast Motor	Warnsignal Motorüberlast – funktioniert analog zu (10) – Fehler (OL2)
12	Rampenbegrenzung	Hoch-Tieflauf Rampen temporär angehalten (Begrenzerfunktion ist aktiv F607F610)
13	Umrichter OK Signal	Zeigt, dass Der Umrichter mit Strom versorgt ist und kein Fehler anliegt
14	Umrichter Betrieb -2	Umrichter befindet sich im "START" Modus, ist aktiv, auch bei F=0 (Motor angesteuert)
15	Endfrequenz erreicht	Endfrequenz erreicht (Rampe beendet) (Hysterese einstellbar über F312)
16	Warnung Übertemp.	80% der Temp. Grenze erreicht, deaktiviert nach Abkühlung, bzw. Abschaltung (OH)
17	Stromschwelle	Stromschwelle, programmierbar über F310 und F311 ist erreicht.
18	Drahtbruch Analog Eingang	Das Eingangssignal an einem Analogkanal hat die einstellbare Schwelle unterschritten (siehe F741/742 und F400/406)
19	Wassermangel	Wassermangel Erkennung über Strom (verzögert - siehe FA26, FA27) - Leerlaufschutz
20	Voralarm Leerlauf	Stromlimit unterschritten – mit Verzögerung (F754, F755).
21	I/O Modbusgesteuert	Gesteuert durch Modbusbefehl: Aktivierung: 2005H = 1, Deaktivierung: 2005H=0
22	I/O Modbusgesteuert	Gesteuert durch Modbusbefehl: Aktivierung: 2006H = 1, Deaktivierung: 2006H=0
23	I/O Modbusgesteuert	Gesteuert durch Modbusbefehl: Aktivierung: 2007H = 1, Deaktivierung: 2007H=0
24	Watchdog	Fehlende Wachdog impulse am programmierten Watchdog Eingang (F326/327)
25-	Reserviert	
30	Slave-Pumpe gestartet	Im Pumpenbetrieb: die ungeregelte Pumpe wurde dazugeschaltet
31	Masterpumpe	Im Pumpenbetrieb: die Umrichtergesteuerte Pumpe läuft
32	Überdruck Alarm	Im Pumpenbetrieb: Druck ausserhalb der, in FA03 gesetzten Grenze
42	Alternativmotor	Umrichter arbeitet mit den alternativen Motorparametern (FExx)
43	MODBUS Timeout Warnung	Wenn F907>0 wird dieser Ausgang nach der verstrichenen Zeit gesetzt, falls kein MODBUS Kommando folgt. Rücksetzbar über dig. Eingang (Zuordnung 60)
45	Frostwächter	Ausgang wird gesetzt, sobald die Kühlkörpertemperatur unter 0°C sinkt
59	oPEn	Externes Sicherheitssignal oPEn wurde getriggert (Eingangszuordnung 42)

10) Parametergruppe 300: Digital I/O Konfiguration

F303 Konfiguration Digitalausgang	Auswahl: 0: digitaler Ausgang	Waykaainatallungu 0
DO1 als Pulsausgang	1: Pulsausgang	Werkseinstellung: 0

Wenn **F303=1** gesetzt arbeitet der Ausgang **D01** als Pulsausgang mit einer max. Frequenz von 50kHz.

Die Konfiguration erfolgt dann über die Parameter F449 - F453.

S-Rampe

O Rampo				
F304 Anfangsprogression	Bereich: 2.050%	Werkseinstellung: 30%		
F305 Endprogression	Dereicii. 2.050 /6			
F306 Aktivierung S-Rampe	Auswahl: 0=Lineare Rampe 1=S-Rampe	Werkseinstellung: 0		

Frequenzschwellen

F307 Frequenzschwelle 1 (Hz)		Werkseinstellung: 10Hz	
F308 Frequenzschwelle 2 (Hz)	Bereich: F112 - F111 (Hz)	Werkseinstellung: 50Hz	
F309 Schwellenhysterese	Bereich: 0; 100%	Werkseinstellung: 50 %	

Gilt für die Meldung über die Digitalausgänge bei Zuordnung zu Funktion 2 / 3.

Die Hysterese wird vom Schwellenwert nach unten gerechnet

Stromschwelle

F310 Stromschwelle (A)	Bereich: 0,0; 5000,0 A	Werkseinstellung: Nennstrom
F311 Hysterese Stromschwelle	Bereich: 0; 100%	Werkseinstellung: 10%

Gilt für die Meldung über Digitalausgänge bei Zuordnung zu Funktion 17.

Die Hysterese wird vom Schwellenwert nach unten gerechnet

Rampenende

F312 Hysterese zum Rampenende	Bereich: 0,00; 5,00 Hz	Werkseinstellung: 0,0 Hz
-------------------------------	------------------------	--------------------------

Für die Meldung "Rampe erreicht" über Digitalausgang – Zuordnungscode: 15

Interner Zähler - Zählerschwellen

F313 Divisor Zählerimpulse Eingang	Bereich: 1; 65000	Werkseinstellung: 1
F314 Zähler Endwert	Bereich: F315; 65000	Werkseinstellung: 1000
F315 Zähler Zwischenwert	Bereich: 1; F314	Werkseinstellung: 500

Gilt für die Meldung der Zählerschwellen über die Digitalausgänge bei Funktionszuordnung: 8 bzw. 9

Die Funktion 8 erwirkt eine Impulsausgabe beim Erreichen der Zählerendwertes.

Bei Zuordnung zu Funktion 9 wird der Ausgang nach Erreichen des Zähler-Zwischenwertes aktiviert und nach Erreichen des Endwertes deaktiviert.

Funktionszuordnung zu den Eingängen: DI1 – DI6(8)

F316 Zuordnung DI1	gg	Werkseinstellung: 11 (TIP-VOR)
F317 Zuordnung DI2		Werkseinstellung: 9 (NOT-STOP EXTERN)
F318 Zuordnung DI3	Zuordnung Funktionen: 0; .61	Werkseinstellung: 15 (KLEMME "FWD")
F319 Zuordnung DI4	Dia anda mataka mata Taka Ha	Werkseinstellung: 16 (KLEMME "REV")
F320 Zuordnung DI5	Die untenstehende Tabelle zeigt die einzelnen Funktionen	Werkseinstellung: 7 (RESET)
F321 Zuordnung DI6	, and the second	Werkseinstellung: 8 (STOP-ohne RAMPE
F322 Zuordnung DI7		Werkseinstellung: 1 (START IMPULS)
F323 Zuordnung DI8		Werkseinstellung: 2 (STOP IMPULS)

Achtung: eine Zuordnung einer Funktion kann nur an einen einzigen Digitaleingang erfolgen. Ist die Funktion bereits an einen anderen Eingang, als den gewünschten vergeben (z.B. über Werkseinstellung), so muss diese Eingangszuordnung zuerst auf 0 gesetzt werden.

Table: Funktionen der Digitaleingänge

Wert	Funktionen der Digitalei	Beschreibung		
	Funktion	Ein Signal hat keinen Effekt - für unbenutzte Eingänge		
0	Keine Funktion	Bei Aktivierung des Einganges startet der Umrichter – identisch mit "RUN" Taste		
1	START Funktion			
2	STOP Funktion	Signal stoppt den Umrichter, identisch mit "STOP" Taste im Bedienpanel		
3	Fixfrequenz K1			
4	Fixfrequenz K2	15-Fixfrequenzen können aktiviert werden (siehe untenstehende Tabelle 300-1)		
5	Fixfrequenz K3	(**************************************		
6	Fixfrequenz K4			
7	RESET	Fehlerrücksetzen, identisch mit "STOP/RESET" Taste im Bedienpanel		
8	STOP-DISABLE	"STOP" über Endstufenfreischaltung, der Antrieb läuft frei aus (Inversion über F324)		
9	NOT-STOP EXTERN	Ext. NOT-STOP Signal, Fehlermeldung: ESP ausgegeben (Signal Inversion über F325)		
10	RAMPENSTOP	Unabhängig von externen Steuersignalen (mit Ausnahme STOP Signal) behält der Umrichter die aktuelle Frequenz bei – Rampen werden angehalten		
11	TIP-VOR	TIP-Betrieb vorwärts/rückwärts, siehe F124, F125 und F126 für Parametrierung		
12	TIP-ZURÜCK	The Deuten volwarts/ruckwarts, siene F124, F125 und F126 iui Faranneureiung		
13	Motorpoti +	Motorpotentiometerfunktion, steigert, bzw. verringert die Ausgangsfrequenz, (Bei		
14	Motorpoti -	Sollwertquelle intern F203=0 / 5, Parameter: F113, F210, F211).		
15	Klemme "FWD"	7		
16	Klemme "REV"	Zuordnung der Kommandos "FWD" , "REV" , und "X" (siehe Zwei/Dreidraht Steuerung		
17	Klemme "X"	des Umrichters, Parameter F208)		
18	BIT1 Rampensatz	Auswahl Hoch-/Tieflauframpensatz (BIT1) – (siehe Tabelle 300-2)		
19	Reserve			
20	20 M / n Umschaltung Drehmomentsteuerung / Drehzahlsteuerung			
21	Sollwertquelle	Umschaltung zwischen Sollwert-Quellen, -Verknüpfungen (siehe F207)		
22	Zählereingang	Zählpuls-Eingang für den internen programmierbaren Zähler		
23	Zählerreset	Setzt den internen Zähler auf 0		
24-29	Reserve			
30	Wassermangel	Im Reglermodus: wenn FA26=1 gesetzt, dann setzt dieser Eingang den Umrichter in den Fehlermodus und EP1 wird angezeigt		
31	Wasser OK	Dient zum Rücksetzen der, durch Funktion 30 ausgelösten, Wassermangelmeldung		
32	FIRE pressure	Drucksollwert Umschaltung auf Notbetrieb (Parameter FA58).		
33	FIRE MODE	Aktivierung Notbetrieb (FA59)		
34	BIT2 Rampensatz	Auswahl Hoch-/Tieflauframpensatz (BIT2) – (siehe Tabelle 300-2)		
35	Reserve			
36	Reserve			
37	NTC / NO	Eingang zur Motortemperaturüberwachung mittels NTC / Schließer Kontakt (KLIXON)		
38	PTC / NC	Eingang zur Motortemperaturüberwachung mittels PTC / Öffner Kontakt (KLIXON)		
49	Reglerstop	Der interne PID Regler wird momentan angehalten		
42	oPEn	Externer Sicherheitseingang (Öffner)		
51	Alternativmotor	Umschaltung zu alternativen Motorparametern (FE00=2)		
53	Watchdog	Watchdog Signal Eingang – Fehlen dieses Signals führt zur Watchdog Auslösung		
54	Frequenz Reset	Rücksetzen der Frequenz auf den Wert in F113		
60	RS485 Timeout reset	Zum Zurücksetzen eines ausgelösten RS485 Timeoutsignals (DIG Ausgang (42)		
61	START/STOP	Generelles START/STOP Signal		

Aufrufen von 15 binär verknüpften Fixfrequenzen - Tabelle 300-1

K4 6	K3 5	K2 4	K1 3	Frequenz	Zugehörige Parameter
0	0	0	0		
0	0	0	1	Fixfrequenz 1	F504/F519/F534/F549/F557/F565
0	0	1	0	Fixfrequenz 2	F505/F520/F535/F550/F558/F566
0	0	1	1	Fixfrequenz 3	F506/F521/F536/F551/F559/F567
0	1	0	0	Fixfrequenz 4	F507/F522/F537/F552/F560/F568
0	1	0	1	Fixfrequenz 5	F508/F523/F538/F553/F561/F569
0	1	1	0	Fixfrequenz 6	F509/F524/F539/F554/F562/F570
0	1	1	1	Fixfrequenz 7	F510/F525/F540/F555/F563/F571
1	0	0	0	Fixfrequenz 8	F511/F526/F541/F556/F564/F572
1	0	0	1	Fixfrequenz 9	F512/F527/F542/F573
1	0	1	0	Fixfrequenz 10	F513/F528/F543/F574
1	0	1	1	Fixfrequenz 11	F514/F529/F544/F575
1	1	0	0	Fixfrequenz 12	F515/F530/F545/F576
1	1	0	1	Fixfrequenz 13	F516/F531/F546/F577
1	1	1	0	Fixfrequenz 14	F517/F532/F547/F578
1	1	1	1	Fixfrequenz 15	F518/F533/F548/F579

Fixfrequenz Auswahl erfolgt binär über K1...K4 (F500=1) – für Direktwahl über K1...K4, können die Fixfrequenzen 1, 2, 4 und 8 verwendet werden.

Für direkte Anwahl von 3 Fixfrequenzen werden Fixfrequenz 1 ...3 über K1...K3 direkt zugeordnet (F500=0).

Umschalten von Hoch/Tieflauframpen - Tabelle 300-2

		. 4.500 000 =	
BIT1 Funktionszuordnung 18	BIT2 Funktionszuordnung 34	Hoch/Tieflauf Rampensatz	Zugehörige Parameter
1	0	Rampensatz 1	F114 / F115
0	0	Rampensatz 2	F116 / F117
1	1	Rampensatz 3	F277 / F278
0	1	Rampensatz 4	F279 / F280

F324 Logik Auswahl für Eingang "STOP - DISABLE" (8)	Auswahl: 0=Positiv	Werkseinstellung: 0
<i>F325</i> Logik Auswahl für Eingang "NOT-STOP EXTERN" (9)	1=Negativ	Werkseinstellung: 0
F326 Watchdog Verzögerungszeit	Bereich: 0,1; 30.000 sec.	Werkseinstellung:10,0
F327 Watchdog Stop Modus	Auswahl: 0=freier Auslauf 1=über Rampe	Werkseinstellung: 0
F328 Filterkonstante Digitaleingänge	Bereich: 1; 100	Werkseinstellung: 20
<i>F329</i> Dlx START Freigabe bei Netz_EIN	Auswahl: 0=freigegeben 1=gesperrt	Werkseinstellung: 0

	·
F300F339 Diagnose Funktionen	Siehe Kapitel: DIAGNOSE

Invertierung Logik Digitaleingänge:

F340 Invertieren der Logik von Digitaleingängen	0: deaktiviert 1: DI1 invertiert 2: DI2 invertiert 4: DI3 invertiert 8: DI4 invertiert 16: DI5 invertiert 32: DI6 invertiert 64: DI7 invertiert	Werkseinstellung: 0
	64: DI7 invertiert 128: DI8 invertiert	

Zum invertieren der Funktionslogik von Digitaleingängen. Sollten mehrere Eingänge invertiert werden, so ist die entsprechende Summe einzugeben (z.B. DI4 und DI6: 8+32=40)

Verzögerung Digitaleingänge:

g g g g g		
F343 Verzögerung - EIN DI1		
F344 Verzögerung - EIN DI2		
F345 Verzögerung - EIN DI3		
F346 Verzögerung - EIN DI4		
F347 Verzögerung - EIN DI5		
F348 Verzögerung - EIN DI6		
F349 Verzögerung - EIN DI7		
F350 Verzögerung - EIN DI8		Werkseinstellung: 0,00 sec
F351 Verzögerung - AUS DI1	Bereich:0,0099,00 sec	Werksellistellung. 0,00 sec
F352 Verzögerung - AUS DI2		
F353 Verzögerung - AUS DI3		
F354 Verzögerung - AUS DI4		
F355 Verzögerung - AUS DI5		
F356 Verzögerung - AUS DI6		
F357 Verzögerung - AUS DI7		
F358 Verzögerung - AUS DI8		

<i>F359</i> STOP Taste Priorität	Auswahl: 0=keine Priorität 1=STOP Priorität	Werkseinstellung: 1	
----------------------------------	--	---------------------	--

Invertierung Logik Digitalausgänge:

F360 Invertieren der Logik von Digitalausgängen	0: deaktiviert 1: DO1 invertiert 2: DO2 invertiert 4: Relais invertiert	Werkseinstellung: 0
--	--	---------------------

Zum invertieren der Funktionslogik von Digitalausgängen. Sollten mehrere Ausgänge invertiert werden, so ist die entsprechende Summe einzugeben (z.B. DO1 und DO2: 1+2=3)

11) Parametergruppe 400: Konfiguration der analogen I/Os

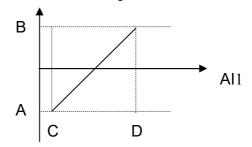
Je nach Umrichter-Baugröße gibt es zwei verschiedene Steuerkarten, und somit unterschiedliche Hardware Konfigurationen der analogen I/O Kanäle:

Umrichter Baugröße E1-E6 - bis 30 kW Umrichter Baugröße E7-CB - 37...400 kW

Die einzelnen Analogkanäle können durch Hardwarekonfiguration und entsprechende Software-Parametrierung an die verschiedensten Ein- / Ausgangssignale angepasst werden.

Hardware Konfiguration siehe Kapitel: 5) Steuerhardware und Hardware-Konfiguration der I/O Kanäle.

Im Folgenden werden die einzelnen Parameter zur softwaremäßigen Konfiguration beschrieben


Konfiguration der Analogen Sollwerteingänge Al1, Al2

F400 Al1 Bereich – untere Grenze (V)	Bereich 0.00VB F402	Werkseinstellung: 0.00V
F401 Zuordnung untere Grenze Al1	Bereich: 0B F403	Werkseinstellung: 1.00
F402 Al1 Bereich – obere Grenze (V)	Bereich: F400B 10.00V	Werkseinstellung: 10.00V
F403 Zuordnung obere Grenze Al1	Bereich: (1.00, F401)B 2.00	Werkseinstellung: 2.00
F404 Verstärkungsfaktor Al1	Bereich: 0.0B 10.0	Werkseinstellung: 1.0
F405 Al1 Filter Zeitkonstante	Bereich: 0.1B 10.0	Werkseinstellung: 0.10

F406 Al2 Bereich – untere Grenze (V)	Bereich 0.00VB F408	Werkseinstellung: 0.00V
F407 Zuordnung untere Grenze Al2	Bereich: 0B F409	Werkseinstellung: 1.00
F408 Al2 Bereich – obere Grenze (V)	Bereich: F406B 10.00V	Werkseinstellung: 10.00V
F409 Zuordnung obere Grenze Al2	Bereich: (1.00, F407)B 2.00	Werkseinstellung: 2.00
F410 Verstärkungsfaktor Al2	Bereich: 0.0B 10.0	Werkseinstellung: 1.0
F411 Al2 Filter Zeitkonstante	Bereich: 0.1B 10.0	Werkseinstellung: 0.10

Der Bereich der Aussteuerung wird durch die obere und untere Grenze bestimmt. Der Bereich zwischen den Grenzen wird als 100% interpretiert. (z.B. F400=2, F402=8, dann entspricht 2B 8V 0..100%)
Die Grenzen können über die Parameter F401 und F403 prozentuell verschoben werden. Dabei gilt: 0 = -100%, 1 = 0%, 2 = +100%. (Beispiel F401=0, F403=2 dann entspricht 100% Aussteuerung -100%...+100% - z.B. 0..10V = -50

HzB 0B +50 Hz).

Konfigurationsbeispiele:

Sollwertquelle Analogkanal Al1 gewählt: F203=1, F-max:F111=50 Hz, F-min:F112=0Hz

Rest: Werkseinstellung

Eingangssignal	Ausgangsfrequenz	F400	F401	F402	F403	F404	Hardware
010V	0Hz+50 Hz	0.00V	1.00	10.00V	2.00	1.0	010V
010V	-50Hz0Hz+50Hz	0.00V	0.00	10.00V	2.00	1.0	010V
010V	-50Hz0Hz	0.00V	0.00	10.00V	1.00	1.0	010V
010V	20Hz50 Hz	0.00V	1.40	10.00V	2.00	1.0	010V
-10V+10V	-50Hz0Hz+50 Hz	0.00V	0.00	10.00V	2.00	1.0	+/10V
020mA	0Hz50Hz	0.00V	1.00	10.00V	2.00	1.0	020mA
420mA	0Hz50Hz	2.00V	1.00	10.00V	2.00	1.0	020mA

Al1..Al2 Spannungs / Stromsignal Auswahl

F438 Al1 Spannung/Strom	Auswahl: 0=Spannunssignal 1=Stromsignal	Werkseinstellung: 0
F439 Al2 Spannung/Strom	Auswahl: 0=Spannunssignal 1=Stromsignal	Werkseinstellung: 1

Diese Parameter müssen zusätzlich zur Hardwarekonfiguration gesetzt werden

Al1..Al2 Totband

F418 Al1 Totzone um 0 Hz	Bereich: +/- 0B 0.50V	Werkseinstellung: 0.00
F419 Al2 Totzone um 0 Hz	Bereich: +/- 0B 0.50V	Werkseinstellung: 0.00

Diese Einstellung gilt nur, wenn über eine entsprechende Programmierung der Zuordnung von oberer und unterer Grenze des Analog-Kanals ein Nulldurchgang erfolgt. Dann wir der, dem Bereich (F=0 +/- Totzone) entsprechende Sollwertbereich als F=0 ausgegeben.

Konfiguration der analogen Ausgänge AO1 - AO2

F423 AO1 Konfiguration Signalart Strom / Spannung	Auswahl: 0=0B 5V 1=0B 10V bzw. 0B 20mA *) 2=4B 20mA *)	Werkseinstellung: 1
F424 Ausgangsfrequenz zugeordnet zum min. Wert von AO1	Bereich: 0.0B F425	Werkseinstellung: 0.05 Hz
F425 Ausgangsfrequenz zugeordnet zum max. Wert von AO1	Bereich: F424B F111	Werkseinstellung: 50.00 Hz
F426 AO1 Multiplikator	Bereich: 0B 120%	Werkseinstellung: 100
F427 AO2 Konfiguration Signalart Strom	Auswahl: 0=0B 20 mA 1=4B 20mA	Werkseinstellung: 1
F428 Ausgangsfrequenz zugeordnet zum min. Wert von AO2	Bereich: 0.0B F429	Werkseinstellung: 0.05 Hz
F429 Ausgangsfrequenz zugeordnet zum max. Wert von AO2	Bereich: F428B F111	Werkseinstellung: 50.00 Hz
F430 AO2 Multiplikator	Bereich: 0B 120%	Werkseinstellung: 100

^{*)} Für AO1: DIP-SWITCH U/I muss für Stromsignalausgang auf I gesetzt werden - siehe Kapitel: 5) Steuerhardware und Hardware-Konfiguration der I/O Kanäle.

F431 Zuordnung Analogausgang AO1 zu Betriebsparametern	Auswahl: 0=Aktuelle Ausgangsfrequenz 1=Motorstrom (normiert 2xln) 2=Motorspannung (normiert) 3=Al1	Werkseinstellung: 0
F432 Zuordnung Analogausgang AO2 zu Betriebsparametern	4=Al2 5=Impulseingang 6=Drehmoment normiert auf Nennmoment 7=Über MODBUS gesteuert 8=Frequenzsollwert 9=Errechnete Geschwindigkeit 10=Drehmoment (motorisch) 11=Reserviert 12=Leistung, normiert auf Nennleistung 13=DO2 digitale Simulation	Werkseinstellung: 1

F433 Multiplikator zur Anpassung Motorspannungsanzeige	Bereich: 0.01B 5* Umrichter	Werkseinstellung: 2.00
F434 Multiplikator zur Anpassung Stromanzeige	Nennwert	Werkseinstellung: 2.00
F435 Multiplikator zur Anpassung Drehmomentanzeige	Bereich: 0.01B 3* Umrichter	Werkseinstellung: 2.00
F436 Multiplikator zur Anpassung Leistungsanzeige	Nennwert	Werkseinstellung: 3.00

Konfiguration Puls-Sollwerteingang: DI1

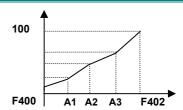
Ähnlich wie über Analogwerte kann der Sollwert auch über Impulse/Frequenz vorgegeben werden. Als Pulseingang fungiert DI1, dieser wird automatisch selektiert, sobald Pulseingang als Sollwertquelle gewählt wird. Maximalfrequenz 100 kHz.

F440 Min. Pulsfrequenz (kHz)	Bereich: 0.00B F442	Werkseinstellung: 0.00 kHz
F441 Zuordnung min. Pulsfrequenz	Bereich: 0.00B 2.0	Werkseinstellung: 1.00
F442 Max. Pulsfrequenz (kHz)	Bereich: F440B 100.00 kHz	Werkseinstellung: 10.00 kHz
F443 Zuordnung max. Pulsfrequenz	Bereich: Max (1.00, F441) B 2.00	Werkseinstellung: 2.00
F445 Filterkonstante Pulseingang	Bereich: 0B 100	Werkseinstellung: 0
F446 0-Hz Totzone Pulseingang	Bereich: 0B +/- F442	Werkseinstellung: 0.00 kHz

Min/Max. Einstellung und Zuordnung der Endpunkte erfolg auf dieselbe Art, wie bei den übrigen Analogeingängen, das gleiche gilt für 0Hz Totzone

Konfiguration Pulsausgang DO1:

Der Digitalausgang DO1 kann über Parameter F303 als Pulsausgang konfiguriert werden – die Konfiguration erfolgt ähnlich, wie die der Analogausgänge


F449 Max. Frequenz Pulsausgang DO1	Bereich: 0.00B 100.00 kHz	Werkseinst.: 10.00 kHz
F450 Nullpunktverschiebung (%)	Bereich: 0.0B 100.0 %	Werkseinstellung: 0.0%
F451 Multiplikator	Bereich: 0.00B 10.00	Werkseinstellung: 1.00
F453 Zuordnung Pulsausgang DO1 zu Betriebsparametern	Auswahl: 0=Aktuelle Ausgangsfrequenz 1=Motorstrom (normiert 2xln) 2=Motorspannung (normiert) 3=Al1 4=Al2 5=Impulseingang 6=Drehmoment 7=Über MODBUS gesteuert 8=Frequenzsollwert	Werkseinstellung: 0

Nichtlineare Analogkennlinie

Den analogen Eingängen Al1 und Al2 kann eine nichtlineare Kennlinie zugeordnet werden, die Programmierung der Kurve erfolgt mittels untenstehender Parameter

F460 Al1 Kennlinie	Auswahl: 0=linear 1=nichtlinear	Werkseinstellung: 0
F461 Al2 Kennlinie	Auswahl: 0=linear 1=nichtlinear	Werkseinstellung: 0
F462 Al1 Kurvenpunkt A1 Spannung	Bereich: F400 - F464	Werkseinstellung: 2.00V
F463 Al1 Zuordnung Punkt A1 (%)	Bereich: F401 - F465	Werkseinstellung: 1.20
F464 Al1 Kurvenpunkt A2 Spannung	Bereich: F462 - F466	Werkseinstellung: 5.00V
F465 Al1 Zuordnung Punkt A2 (%)	Bereich: F463 - F467	Werkseinstellung: 1.50
F466 Al1 Kurvenpunkt A3 Spannung	Bereich: F464 - F402	Werkseinstellung: 8.00V
F467 Al1 Zuordnung Punkt A3 (%)	Bereich: F465 - F403	Werkseinstellung: 1.80
F468 Al2 Kurvenpunkt B1 Spannung	Bereich: F406 - F470	Werkseinstellung: 2.00V
F469 Al2 Zuordnung Punkt B1 (%)	Bereich: F407 - F471	Werkseinstellung: 1.20
F470 Al2 Kurvenpunkt B2 Spannung	Bereich: F468 - F472	Werkseinstellung: 5.00V
F471 Al2 Zuordnung Punkt B2 (%)	Bereich: F469 - F473	Werkseinstellung: 1.50
F472 Al2 Kurvenpunkt B3 Spannung	Bereich: F470 - F412	Werkseinstellung: 8.00V
F473 Al2 Zuordnung Punkt B3 (%)	Bereich: F471 - F413	Werkseinstellung: 1.80

Die Zuordnung (in %) der Zwischenpunkte erfolgt gleich wie die Zuordnung der Endpunkte (0= -100%....1=0%....2=+100%)

12) Parametergruppe 500: Fixfrequenzen, Frequenzfolgesteuerung

E2100 Umrichter erlauben die Definition von 15 Fixfrequenzen, incl. Individueller Rampensätze und Drehrichtungen. Für bis zu 8 Fixfrequenzen ist ein automatischer Ablauf konfigurierbar, dafür kann jeweils eine Laufzeit und eine Pausenzeit programmiert werden.

Der Fixfrequenzmodus wird aufgerufen durch entsprechende Konfiguration der Sollwertquelle (F203=4 bzw. F204=4)

Fixfrequenzsteuerung wird aktiviert, wenn F203=4 (F204=4) gesetzt ist, folgende Tabelle zeigt die Zusammenhänge:

F500 Art der Fixfrequenzsteuerung	Auswahl: 0: 3 Fixfrequenzen Direktwahl über Klemmen 1: 15 Fixfrequenzen binär kodiert (über Klemmen) 2: Bis zu 8 Fixfrequenzen im Autozyklusmodus	Werkseinstellung: 1
-----------------------------------	---	---------------------

F500=0: Bis zu **3** Fixfrequenzen über Klemmen, Direktwahl, kombinierbar mit analoger Sollwertsteuerung, Fixfrequenzen haben Priorität gegenüber Analogsollwert

F500=1: Bis zu **15** Fixfrequenzen über Klemmen, binär verknüpft, kombinierbar mit analoger Sollwertsteuerung, Fixfrequenzen haben Priorität gegenüber Analogsollwert

F500=2: Bis zu 8 Fixfrequenzen mit Autozyklus, manuelle Frequenzbeeinflussung ist nicht möglich, der zyklische Durchlauf erfolgt automatisch, konfigurierbar durch entsprechende Parameter **F501, F502, F503**

START/STOP Steuerung im Fixfrequenzmodus: bei (**F208=0**) über Tasten Bedienpanel, alternativ über Klemmen – dig. Eingang Funktionszuordnung: **61**. **F208=1/2** auch möglich, entsprechende Funktionszuordnung von FWD/REV ist notwendig

Parameter Frequenzfolfesteuerung:

F501 Anzahl der Frequenzen	Auswahl: 2A 8	Werkseinstellung: 7
F502 Anzahl der automatischen Durchläufe	Bereich: 0A .9999 0 = Dauerzyklus	Werkseinstellung: 0
F503 Status nach Beendigung des automatischen Durchlaufs	Auswahl: 0: Stop 1: Beibehalten letzten aktiven Frequenz	Werkseinstellung: 0

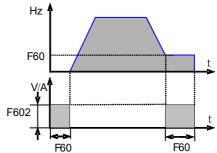
Fixfrequenzprogrammierung:

	Hochlaufzeit Fixfrequenzen 1 bis 15 (0,13000sec.)	Tieflaufzeit Fixfrequenzen 1 bis 15 (0,13000sec.)	Drehrichtung Fixfrequenzen 1bis 15 – (0=FWD, 1=REV)	Autozyklus - Laufzeit für die Fixfrequenzen 1 bis 8 (0,13000sec.) (1sec.)	Autozyklus - Pause für die Fixfrequenzen 1 bis 8 (0,13000sec.) (0sec.)		Werkseinstellung: Hoch/Tieflaufzeiten Modellabhängig
F504 Fixfrequenz 1 (Hz)	F519	F534	F549	F557	F565		Werk: 5.00Hz
F505 Fixfrequenz 2 (Hz)	F520	F535	F550	F558	F566	Einstellbereich	Werk: 10.00Hz
F506 Fixfrequenz 3 (Hz)	F521	F536	F551	F559	F567	F504 – F518:	Werk: 15.00Hz
F507 Fixfrequenz 4 (Hz)	F522	F537	F552	F560	F568	F112F 111	Werk: 20.00Hz
F508 Fixfrequenz 5 (Hz)	F523	F538	F553	F561	F569		Werk: 25.00Hz
F509 Fixfrequenz 6 (Hz)	F524	F539	F554	F562	F570		Werk: 30.00Hz
F510 Fixfrequenz 7 (Hz)	F525	F549	F555	F563	F571		Werk: 35.00Hz
F511 Fixfrequenz 8 (Hz)	F526	F541	F556	F564	F572		Werk: 40.00Hz
F512 Fixfrequenz 9 (Hz)	F527	F542	F573				Werk: 5.00Hz
F513 Fixfrequenz 10 (Hz)	F528	F543	F574				Werk: 10.00Hz
F514 Fixfrequenz 11 (Hz)	F529	F544	F575				Werk: 15.00Hz
F515 Fixfrequenz 12 (Hz)	F530	F545	F576				Werk: 20.00Hz
F516 Fixfrequenz 13 (Hz)	F532	F546	F577				Werk: 25.00Hz
F517 Fixfrequenz 14 (Hz)	F532	F547	F578				Werk: 30.00Hz
F518 Fixfrequenz 15 (Hz)	F533	F548	F579				Werk: 35.00Hz

Achtung: Funktion REV (Zuordnung 16) bei F208=2 überschreibt die Drehrichtung

13) Parametergruppe 600: Bremssteuerung / Hilfsfunktionen

Gleichstrombremse


F600	Aktivierung Gleichstrom Bremsfunktion	Auswahl: 0: DC Bremse deaktiviert 1: DC Bremse vor Start 2: DC Bremse nach STOP 3: Bevor START und nach STOP	Werkseinstellung 0
F601	Frequenzschwelle DC- Bremse	Bereich: 0.2: 5.0 Hz	Werkseinstellung 1.00 Hz
F602	Intensität DC- Bremse START	Paraish: 0: 4000/	Werkseinstellung 10
F603	Intensität DC- Bremse STOP	Bereich: 0: 100%	Werkseinstellung setting
F604	DC Bremsdauer START	Bereich: 0.0 - 10.0 sec.	Warks singtelling 0.5 and
F605	DC Bremsdauer STOP	Defeicif. U.U - 10.0 Sec.	Werkseinstellung 0.5 sec.

Die DC Bremsfunktion kann als Alternative zum STOP über Rampe, verwendet werden (F209=2) Dazu wird die Intensität (F603) und die Dauer gesetzt (F605).

Achtung!! Eine falsche Parametrierung der DC-Bremsfunktion kann zu Schäden am Motor durch Überhitzung führen.

Beim Bremsen mit Hilfe der DC Bremsfunktion (F209=2) wird die gesamte Energie des Antriebes im Rotor des Motors in Wärme verwandelt, ein STOP mittels DC Bremse ist also nur sporadisch möglich, ansonsten kann der Rotor überhitzen, bzw. der Motor beschädigt werden.

Strom- Spannungsbegrenzerfunktionen

E2100 Umrichter haben Strom- bzw. Spannungsbegrenzerfunktionen eingebaut.

Strombegrenzung: Diese führt beim Überschreiten einer einstellbaren Stromschwelle zu einem Anhalten der Hochlauframpe. Ist die Endfrequenz bereits erreicht, so erfolgt eine Frequenzreduktion, falls notwendig, bis hinunter zur eingestellten Minimalfrequenz.

Während der Tieflauframpe ist die Strombegrenzungsfunktion immer deaktiviert.

Spannungsbegrenzung: Ein Überschreiten der Zwischenkreisspannungsschwelle hat eine Rampenverlängerung während der Tieflaufphase zu Folge.

Meldung "Umrichter im Begrenzungsmodus" an Digitalausgang kann über die Funktionszuordnung (12) erfolgen

F607 Aktivieren der Begrenzerfunktionen	Auswahl: 02: reserviert 3: Strom/Spannung 4: Spannung 5: Strom	Werkseinstellung: 5
F608 Stromschwelle (%)	Bereich: 25: FC49 %	Werkseinstellung: 160 %
F609 Zwischenkreis Spannungsschwelle (%)	Bereich: 110: 200 %	Werkseinstellung: 130 %
F610 Max. Verweildauer im Begrenzerstatus	Bereich: 0.1: 3000.0 sec.	Werkseinstellung: 0.0 sec.

Dauert die Begrenzungsaktivität länger als die, in F610 eingegebene Zeit, so stoppt der Antrieb und eine Fehlermeldung OL1 wird im Display ausgegeben

Achtung!! Aktivieren der Spannungsbegrenzerfunktion (F607=3/4) kann eine Verlängerung der Tieflauframpe zu Folge haben.

Bremschopperkonfiguration (interner Chopper)

F611 Einsatzschwelle Bremschopper (V)	Bereich: 320: 2000 V DC	Werkseinstellung: 400V Umrichter: 780V DC 230V Umrichter: 390 V DC
F612 Max. duty-cycle Bremschopper	Bereich: 0: 100 %	Werkseinstellung: 100 %

Fangschaltung (nur für V/Hz Modus)

F613 Aktivierung der Funktion Fangschaltung	Auswahl: 0: deaktiviert 1: immer aktiv 2: aktiv bei Netz-EIN	Werkseinstellung: 0
F614 Fangmodus (SCAN-Prozess ausgehend von:)	Auswahl: 0: letzter abgespeicherter Frequenz 1: Maximalfrequenz 2: 0 Hz	Werkseinstellung: 0
F615 SCAN Geschwindigkeit	Bereich: 1: 100	Werkseinstellung: 20
F618 Fangverzögerung	Bereich: 0,560 sec	Werkseinstellung: 1,5 sec

F620 Chopper Sperre nach STOP	Bereich: 0,03000,0 sec	Werkseinstellung: 5,0 sec
-------------------------------	------------------------	---------------------------

LCD display Konfiguration / Parameter über Keypad Kopieren

F621 LCD Modus	Auswahl: 0: Normal 1: Invers	Werkseinstellung: 0
<i>F638</i> Kopiermodus	Auswahl: 0: Kopieren gesperrt 1: Alle Parameter 2: Keine Leistungs-/Spannungsparameter	Werkseinstellung: 1
F639 Kopier-Kompatibilitätscode	Bereich: 20002999	
<i>F640</i> Parameter Kopierauswahl	Auswahl: 0: Mit Motorparametern 1: Ohne Motorparameter	Werkseinstellung: 1

Pendeldämpfungsfunktion

F641 Pendeldämpfungsfaktor	Bereich: 1: 100%	Werkseinstellung setting: 10%
-----------------------------------	------------------	-------------------------------

Arbeitet nur im V/Hz Betriebsmodus (F137=0,1,2), Fangfunktion muss deaktiviert sein (F613=0)

LCD 4 Zeilen Keypad: Konfiguration, Parameterkopieren mit Keypad

F643 Multifunktionstaste	Auswahl: 0: Keine Funktion 1: TIPP Vorwärts 2: TIPP Rückwärts 3: LOCAL/REMOTE	Werkseinstellung: 0
F644 Parameterkopieren mit Keypad	Auswahl: 0: Normalbetrieb 1: START Kopieren Umrichter >> Keypad 2: START Kopieren Keypad >> Umrichter 3: START Kopieren USER-Param.1 >> Keypad 4: START Kopieren Keypad >> USER-Param.1 5: START Kopieren USER-Param.2 >> Keypad 6: START Kopieren Keypad >> USER-Param.2	Werkseinstellung: 0

LCD 4 Zeilen Display: Auswahl von Betriebsparametern zur Anzeige

F646 LCD - Dauer Hintergrundbeleuchtung	Bereich: 0100 sec	Werkseinstellung: 100
to. g. anaboloaciitang		

	Selection: 0: Chinesisch	
F647 Sprachauswahl	1: Englisch	Werkseinstellung: 1
	2: Deutsch	

F656 DC Bremse Verzögerung	Bereich: 0,030,0 sec	Werkseinstellung: 0,00 sec
----------------------------	----------------------	----------------------------

F657 Aktivierung Überbrückungsfunktion Netz- Kurzunterbrechungen	Auswahl: 0: Deaktiviert 1: Frequenzabsenkung 2: STOP mit Rampe	Werkseinstellung: 0
F658 Separate Hochlauframpe	Bereich: 0,03000sec.	Werkseinstellung: 0,0 sec
<i>F659</i> Separate Tieflauframpe	Bereich: 0,03000sec.	Werkseinstellung: 0,0 sec
<i>F660</i> Einsatzspannung Überbrückungsfunktion	Bereich: 230V Umrichter: 200VF661 400V Umrichter: F6601400V	Werk: 230V Inverter: 270V 400V Inverter: 450V
<i>F661</i> Spannungsschwelle Rückkehr zum Normalmodus	Bereich: 230V Umrichter: F660300V 400V Umrichter: F660530V	Werk: 230V Inverter: 285V 400V Inverter: 480V
F662 Verzögerung für Übergang Zum Normalmodus	Bereich: 0,0010 sec	Werkseinstellung: 0,3 sec

F670 U/I Begrenzerfunktionen Konstante	Bereich: 0,0110,00 sec	Werkseinstellung: 2,00 sec
--	------------------------	----------------------------

Ausgangsspannungsvorgabe über separaten Sollwert

Für Spezielle Anwendungen kann die Ausgangsspannung unabhängig von der Frequenz gesteuert werden (F137=4)

<i>F671</i> Sollwertquelle für Unabhängige Spannungssteuerung	Auswahl: 0: Intern - F672 1: Al1 2: Al2 3: Reserviert 4: MODBUS - Register 2009H 5: Pulse Eingang 6: PID 710: Reserviert		Werkseinstellung: 0
F672 Motorspannungssollwert	Bereich: 0,0100%		Werkseinstellung: 100%
F673 Untere Grenze Motorspannung (%)		0%F674	Werkseinstellung: 0%
F674 Obergrenze Motorspannung (%)		F673100%	Werkseinstellung: 100%
F675 Spannungsanstiegszeit (sec.)		0.03000 sec	Werkseinstellung: 5.0 sec
F676 Spannungsabfallzeit (sec.)		0.03000 sec	Werkseinstellung: 5.0 sec

	ung und Freguenz fallen zugleich auf 0	Werkseinstellung: 0
--	--	---------------------

Achtung!! Diese Funktion ist nur für Sonderanwendungen vorgesehen, falsche Anwendung kann zu Schäden an Motor, Umrichter und Maschinen führen

14) Parametergruppe 700: Fehlerhandling und Schutzfunktionen

Angezeigte Fehler im Display mit (Fehlercode)

Aligozolg	ite reilier illi bispiay i			
CODE	Beschreibung	Ursache	Abhilfe	
OC (2)	Überstrom detektiert über Hardware	Rampen zu kurz	Rampen verlängern Motorverkabelung Überprüfen	
OC1 (16)	Überstrom detektiert über Software	Kurzschluß im Ausgang Motorschaden, Antrieb blockiert	Antrieb freimachen Spannungsanhebung reduzieren	
OC2 (67)	Überstrom detektiert über Hardware	Falsche Parametrierung	Motorparameter korrekt eingeben	
GP (26)	Erdschluss	Kurzschluss gegen PE	Motor / Verkabelung überprüfen	
OL1 (5)	Überlast Umrichter	Überlastung	Last reduzieren	
OL2 (8)	Überlast Motor	Überlastung	Dimensionierung überprüfen	
OE (3)	Zwischenkreis Überspannung	Netzüberspannung Trägheitsmoment zu groß Tieflauframpe zu kurz Drehzahlregelparameter falsch gesetzt	Netzspannung überprüfen Umrichternennspannung korrekt ?? Bremswiderstände verwenden Tieflauframpen verlängern	
PF1 (4)	Phasenfehler Eingang	Eine von drei Eingangsphasen ist unterbrochen	Stromversorgung überprüfen	
PF0 (17)	Phasenfehler Ausgang	Motorphase unterbrochen Motorleitung defekt	Verbindung zu Motor überprüfen Motorphasen testen	
LU (6)	Unterspannung	Zwischenkreisspannung zu niedrig	Stromversorgung überprüfen	
ОН (7)	Umrichter Übertemperatur	Zu hohe Umgebungstemperatur Schlechte Wärmeabfuhr aus Schaltscharank Umrichter/Kühlkörper verschmutzt Trägerfrequenz zu hoch gewählt Motorleitungen zu lang	Überprüfen, ob alle vorgeschriebenen Umgebungsbedingungen eingehalten werden. Korrekt parametrieren. Korrekte Montage sicherstellen	
OH1 (35)	Motor Übertemperatur	Motor PTC hat ausgelöst	Motor Dimensionierung / Kühlung überprüfen	
AErr (18)	Drahtbruch Analogsignal	Analogsignal ist unterhalb eines festgelegten Wertes F4xx	Überprüfen von Steuerleitungen, Sollwertquelle und Parametrierung	
EP (20) EP2 (20) EP3 (19)	Umrichter Unterlast/Leerlauf	Leerlauf Wassermangel Antriebsstrang unterbrochen	Antriebseinheit überprüfen Wasserversorgung sicherstellen	
nP (22)	Pumpensteuerung: Druck außer zulässigem Bereich	Druck außerhalb der festgelegten Grenzen. Umrichter wechselt in den Schlafmodus	Reglergrößen korrekt einstellen Wasserentnahme	
CE (45)	Modbus Timeout	Modbus Signal fehlt für eine Bestimmte Zeit (F905)	Modbusverbindung überprüfen	
CE1 (53)	Keypad getrennt	Keine Verbindung zum Keypad	Verkabelung überprüfen	
ESP (11)	Externe Notabschaltung	ESP Eingang wurde getriggert		
ERR0	Parametrierfehler	Parameter wurde nicht angenommen	Umrichter in STOP Modus versetzen	
ERR1	Falsches Passwort	Keine, oder falsche Passworteingabe	Richtiges Passwort eingeben	
ERR2 (13)	Fehler in Motor Parametermessung	Motor nicht freilaufend während dynamischem AUTOTUNING - Prozess	Motor von Antriebselementen mechanisch trennen	
ERR3 (12)	Überstrom im Stillstand	Hardwarefehler - Überstrom in Stillstand	JS-Technik- Service kontaktieren	
ERR4 (15)	Fehler Strommessung	Strommessung - Hardwarefehler	JS-Technik- Service kontaktieren	
ERR5 (23)	PID Parameterfehler	Reglerfehler durch falsche Parametrierung	Reglerparameter überprüfen und gegebenfalls korrigieren	
ERR6 (49)	Watchdog	Watchdog Eingang hat kein Signal	Watchdog Signal überprüfen	
EEP (47)	EEPROM error	EEPROM Schreib-/Lesefehler	Steuerkarte tauschen	
PG (27)	ENCODER (Option)	Encoderfehler	Encoder/Verkabelung prüfen	
PCE (32)	PMSM Fehler	PMSM Tuning Fehler	Parameter prüfen	
		<u> </u>	·	

Fehlermeldung erfolgt auch über programmierbaren Digitalausgang/Relais (Parameter 300,301,302)

Funktionszuordnung 1: "Umrichter Fehler" Meldung Funktionszuordnung 13: "Umrichter OK" Meldung

Verzögerung STOP-Signal mit Endstufenfreischaltung (Klemme)

F700 Aktivierung der Verzögerung	Auswahl: 0: sofortige Freischaltung 1: verzögert	Werkseinstellung: 0
F701 Verzögerungszeit (sec.)	Bereich: 0.0F 60.0 sec.	Werkseinstellung: 0.0 sec.

gilt nur bei Aktivierung über Klemmensignal (F201=1/2/4, F209=1)

Lüftersteuerung

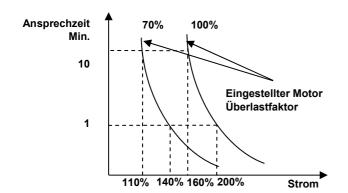
F702 Lüftersteuerung	Auswahl: 0: Temperaturgesteuert 1: EIN – wenn Umrichter am Netz 2: EIN – wenn Umrichter in "START" Modus	Werkseinstellung: 2
	3: Temperaturgesteuert + Testlauf	

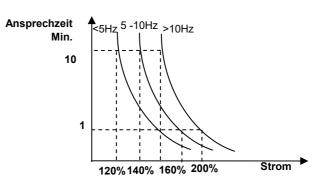
F702=0: Temperatur gesteuert, schaltet bei 35°C ein.

F702=2: Lüfter läuft, wenn Umrichter in Betrieb, nach STOP läuft er so lange nach, bis die KK Temperatur unter 40°C sinkt

F702=3: Temperaturgesteuert, mit Testlauf in regelmäßigen Zeitabständen

Umrichter- Motorüberlastungsschutz


Die Abschalt-Schwellen und Schwellen für Warnung können frei programmiert werden, sowohl für Umrichter-Überlast, als auch für Motor-Überlast


Über digitale Ausgänge kann die jeweilige Warnung angezeigt werden (Funktionszuordnung 10 / 11)

F704 Schwelle für Warnung UMRICHTER ÜBERLAST Faktor (%) 10	Bereich: 50 - 100%	Werk: 80 %
F705 Schwelle für Warnung MOTOR ÜBERLAST Faktor (%) 11	Bereich: 50 – 100%	Werk: 80 %
F706 Schwelle für UMRICHTER ÜBERLAST Faktor (%)	Bereich: 120 – 190%	Werk: 150 %
F707 Schwelle für MOTOR ÜBERLAST Faktor (%)	Bereich: 20 - 100%	Werk: 100 %

Faktoren beziehen sich auf die jeweiligen Nennströme für Motor bzw. Umrichter Die Warnung, bzw. Abschaltung erfolgt verzögert, abhängig vom Grad der Überlastung Für den Motor kommt noch die Frequenzabhängigkeit dazu

Folgende Kurven zeigen die Ansprechcharakteristik für die Motorüberwachung:

Fehlerhistory

Parameter zum Auslesen des Fehlerspeichers:

F708 Letzter Fehler		F711 Frequenz beim letzten Fehler (Hz) F712 Strom beim letzten Fehler (A) F713 ZK-Spannung beim letzten Fehler (V)
F709 Vorletzter Fehler	Fehlercodes: Siehe Tabelle am Anfang dieses Kapitels	F714 Frequenz beim vorletzten Fehler (Hz) F715 Strom beim vorletzten Fehler (A) F716 ZK-Spannung beim vorletzten Fehler (V)
F710 Drittletzter Fehler		F717 Frequenz beim drittletzten Fehler (Hz) F718 Strom beim drittletzten Fehler (A) F719 ZK-Spannung beim drittletzten Fehler (V)

Fehlerzähler:

F720 Ereignis-Zähler Überstromfehler	ОС	
F721 Ereignis-Zähler Überspannungsfehler	OE	
F722 Ereignis-Zähler Übertemperaturfehler	ОН	
F723 Ereignis-Zähler Überlastfehler	OL1	

Konfiguration Überwachungsfunktionen

Aktivierung Phasenüberwachung, Unterspannungsüberwachung und Temperaturüberwachung

F724 Eingangsphasenüberwachung	Auswahl: 0: deaktiviert 1: aktiviert	Werkseinstellung: 1
F725 Unterspannungsreset	Auswahl: 0: manuall 1: automatisch	Werkseinstellung: 1
F726 Übertemperaturüberwachung	Auswahl: 0: deaktiviert 1: aktiviert	Werkseinstellung: 1
F727 Phasensymmetrie Motor	Auswahl: 0: deaktiviert 1: aktiviert	Werkseinstellung: 0

Verzögerung Fehlermeldung

F728 Verzögerung Eingangs-Phasenfehler Erkennung	Bereich: 0.1 - 60.0 sec.	Werkseinstellung: 0.5 sec.
F729 Verzögerung Unterspannungserkennung	Bereich: 0.1 - 60.0 sec.	Werkseinstellung: 5.0 sec.
F730 Verzögerung Übertemperatur Erkennung	Bereich: 0.1 - 60.0 sec.	Werkseinstellung: 5.0 sec.
F732 Schwelle für Unterspannung (V) (im DC - Zwischenkreis)	Bereich: 0.1 – 450V	230V Umrichter: 245 V 400V Umrichter: 450 V

Softwaremäßige Überstromerkennung

F737 Softwaregesteuerter Überstromschutz	Auswahl: 0: deaktiviert 1: aktiviert	Werkseinstellung: 1
F738 Software Überstromgrenze (Nennstrom)	Bereich: 0.50 - 3.00	Werkseinstellung: 2.5
F739 Ereignis-Zähler SW Überstrom Abschaltung		

Drahtbrucherkennung Analogsignal

F741 Analogsignal Drahtbruch Meldung	Auswahl: 0: deaktiviert 1: STOP und AErr im Fehlermeldung im Display 2: STOP ohne Fehlermeldung 3: Umrichter fährt auf F-min 4: Reserve	Werkseinstellung: 0
F742 Anspruchschwelle Drahtbruchmeldung (%)	Bereich: 1F 100 %	Werkseinstellung: 50%

Meldung über digitalen Ausgang (Funktionszuordnung 18)

Wenn **F400** bzw. **F406** kleiner als 0.01V gesetzt sind ist die Drahtbruchmeldung deaktiviert (empfohlen wird mindestens 1V) Anspruchschwelle bezieht sich prozentuell auf die Werte in **F400**, bzw. **F406**

Kühlkörper-Temperaturwarnung

	F745 Schwelle Übertemperaturwarnung (%)	Bereich: 0100%	Werkseinstellung: 80
--	---	----------------	----------------------

Meldung über digitaler Ausgang (Funktionszuordnung 16)

Temperaturgesteuerte PWM Frequenz Reduktion (gilt nur für F159=0)

F746 Einsatzschwell für Reduktion °C	Bereich: 60100°C	Werkseinstellung: 75°C
F747 Temperaturabhängige PWM Frequenzanpassung	Auswahl: 0: deaktiviert 1: aktiviert	Werkseinstellung: 1

Achtung, bei Verwendung von SINUS Filtern am Ausgang darf diese Funktion nicht aktiviert werden F747=0 !!

Motor Überlastfaktor

F752 Motor Überlast Integrationszeit	Bereich: 0,120%	Werkseinstellung: 1.0
<i>F753</i> Motor Typ	Auswahl: 0: Standardmotor 1: Zwangsgekühlter Umrichtermotor	Werkseinstellung : 1

Für F753=0 wird der Motorschutz für Frequenzen unterhalb 30 Hz empfindlicher

Leerlaufmeldung

F754 Schwelle Mindeststrom (%)	Bereich: 0F 200 %	Werkseinstellung: 5%
F755 Verzögerung Leerlaufmeldung (sec.)	Bereich: 060 sec.	Werkseinstellung: 0.5 sec.

Meldung über digitalen Ausgang (Funktionszuordnung 20)

Zwischenkreisspannung Messintervalle

F756 Im START Modus	Bereich: 0F .5000 msec	Werkseinstellung: 0 msec
F757 Im STOP Modus	Bereich: 0,0100 sec.	Werkseinstellung: 5.0 sec.

Frequenzabhängige PWM Mindestfrequenz

F759 Koeffizient für Anhebung	Bereich: 315	Werkseinstellung: 7
-------------------------------	--------------	---------------------

Faktor für automatische PWM Freqenzanhebung für höhere Ausgangsfrequenzen (Mindestfrequenz=F759 x F-out)

Erdschlusserkennung

F760 Erdschlusserkennung	Auswahl: 0: deaktiviert 1: aktiviert	Werkseinstellung: 0
--------------------------	---	---------------------

Reversier - Modus

F761 Reversierung	Auswahl 0: Reversierung über F0=0 (mit Verz. F120) 1: Reversierung über f-START (F109) - unverzögert	Werkseinstellung: 0
--------------------------	---	---------------------

LCD Display Text Editor (Option 4 Zeilen alfanumerisches Display)
Definition von Zeile 1 (Branding), Anzeige-Parametername, Parameter-Einheitsname und Multiplikator für Anzeige

F762 Text in Zeile 1	21 Zeichen Alfanumerischer EDITOR	Werk:
F763 Name Parameter aus (F665)	21 Zeichen Alfanumerischer EDITOR	Werk:
F764 Name Einheit-Parameter	6 Zeichen Alfanumerischer EDITOR	Werk:
F765 Multiplikator für angezeigten Wert	Bereich: 0,001200 %	Werk: 100 %

Interne Software Codes Rev. Nr.

F767 Sondersoftware Rev. Nr.	Read only	Read only
F768 PMSM Motor Code Rev. Nr.	Read only	Read only
F769 Asyncron Code Rev. Nr.	Read only	Read only
F770 Hardware Erweiterung SW. Code Rev. Nr.	Read only	Read only

15) Parameter Gruppe 800: AUTOTUNING Motordateneingabe

Achtung!! Eine vollständige und genaue Eingabe aller Motorparameter, so wie am Typenschild ersichtlich, ist erforderlich. Dies gilt vor allem für SLV und PMM Betrieb. Falsche Dateneingabe kann zu Schäden an Umrichter und/oder Motor führen, außerdem kann ein unvorhersehbares Verhalten des Antriebes die Folge sein

Basisdaten für Asynchron- und Synchronmotor

F800 Automatische Motor-Parameter Ermittlung (Autotuning)	Auswahl: 0: Autotuningfunktion deaktiviert 1: START dynamisches Autotuning 2: START statisches Autotuning	Werkseinstellung: 0
F801 Motor-Nennleistung (kW)	Bereich: 0.2C 1000 kW	
F802 Motor-Nennspannung (V)	Bereich: 1C 1300 V	
F803 Motor-Nennstrom (A)	Bereich: 0.2C 6553,5 A	
F804 Polzahl (p) (read only)	Nicht eingeben, wird errechnet	READ ONLY
F805 Nenndrehzahl (U/min)	Bereich: 1C 30000 U/min	
F810 Motor-Nennfrequenz (Hz)	Bereich: 1.0C 300.0 Hz	Werkseinstellung: 50.00Hz

Die Daten in oben stehender Tabelle (excl. Polzahl) müssen dem Motortypenschild entsprechend eingegeben werden, bevor die Autotuning Funktion gestartet werden kann.

Ermittlung der übrigen Motordaten durch AUTOTUNING

F800=0: keine automatische Motordatenermittlung erfolgt. Nach Eingabe von Parameter F801..F803, F805 und F810 werden Standardwerte übernommen. Falls die Werte F806...809 bekannt sind können diese von Hand abgeändert werden. (Diese Prozedur ist ungenau und wird nicht empfohlen)

F800=1: Motorparameter werden dynamisch ermittelt. Nach Eingabe von **F801C F805** und **F810** ist es möglich einen automatischen Messzyklus auf folgende Weise zu starten, dabei muss der Motor von der Last getrennt werden, Trägheitsmomente sollten aber mit berücksichtigt werden (Rampen F114/F115 nicht zu kurz einstellen):

F800=1 eingeben; Taste RUN drücken, "TEST" erscheint im Display: Jetzt beginnt die dynamische Ermittlung der Motorparameter; nach einer kurzen Zeit wird der Motor mit der Rampe in F114 beschleunigt und nach einer bestimmten Zeit wieder mit der Rampe in F115 abgebremst. Nach Durchlaufen dieses Zyklus werden die Parameter automatisch abgespeichert, F800 wir automatisch wieder auf 0 zurückgesetzt

F800=2: Statische Ermittlung der Motor-Parameter, für den Fall, dass es nicht möglich ist, den Motor von der Last zu trennen. Der Motor wird während dieser Messung nicht drehen, er darf aber auch nicht gedreht werden. Vorgehensweise für das statische Autotuning:

F800=2 eingeben; Taste RUN drücken, "TEST" erscheint im Display; jetzt beginnt die statische Ermittlung der Motorparameter; Die Werte für Ständerwiderstand, Läuferwiderstand und Streureaktanz werden automatisch in die Parameter F806 bis F808 übernommen, F800 wird automatisch wieder auf 0 gesetzt.

Für einfachen V/Hz Betrieb ist kein AUTOTUNING erforderlich

Autotuning Ergebnisse (ASYNCRON Motor)

F806 Stator Widerstand (Ohm)	Bereich: 0.001C 65.00 Ohm	
F807 Rotor Widerstand (Ohm)	Bereich: 0.001C 65.00 Ohm	
F808 Streureaktanz (mH)	Bereich: 0.01C 650.0 mH	
F809 Hauptreaktanz (mH)	Bereich: 0.1C 6500 mH	

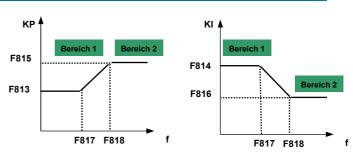
Wird der Parameter **F801** (Motornennleistung) geändert, so werden die Parameter **F806C F809** immer mit Standardwerten überschrieben, durch einen automatischen Messzyklus können diese dann wieder verfeinert werden.

PWM Frequenz Umschaltschwelle

F811 Frequenzschwelle	Bereich: 0,0020,00 Hz	Werkseinstellung: 8,00 Hz
-----------------------	-----------------------	---------------------------

Umrichter startet immer mit reduzierter PWM Frequenz, ab dieser Schwelle wird auf die Nenn-PWM umgeschaltet

Drehzahlregler Parameter SLV Modus (ASYNCRON Motor)


F812 Dauer-Starterregung	Bereich: 0C 30.0 sec.	Werkseinstellung: 0.1 sec.
F813 Proportionalfaktor Drehzahlregler Bereich 1 KP1	Bereich: 1C 100	Werkseinstellung: 30
F814 Integralfaktor Drehzahlregler Bereich 1 Kl1	Bereich: 0.01C 10.00	Werkseinstellung: 0.50
F815 Proportionalfaktor Drehzahlregler Bereich 2 KP2	Bereich: 1C 100	Werkseinstellung: 20
F816 Integralfaktor Drehzahlregler Bereich 2 Kl2	Bereich: 0.01C 10.00	Werkseinstellung: 1.00
F817 PID Bereichs-Übergang 1	Bereich: 0C F818	Werkseinstellung: 5.00 Hz
F818 PID Bereichs-Übergang 2	Bereich: F817C F111	Werkseinstellung: 10.00 Hz
F819 Regler-Genauigkeit	Bereich: 50C 200	Werkseinstellung: 100
F820 Regler-Filterkoeffizient	Bereich: 0C 100	Werkseinstellung: 0
FB22 Drehmomentlimit bei Drehzahlregelung	Bereich: 0C 250 %	Werkseinstellung: 200 %
F844 Leerlaufstrom (A)	Bereich: 0,1 A.C F803	Werkseinstellung: Modellabhängig

F817, F818: Parameter für die frequenzabhängige Umschaltung der PID Reglerparameter

Parametrierung des Drehzahlreglers kann zu instabilem Verhalten des Antriebes, und/oder zu Schäden an den Antriebskomponenten führen

ACHTUNG!! Eine falsche

Die Werksmäßig vorgegebenen Parameter sollten nur mit größter Vorsicht verändert werden, um das dynamische Verhalten des Antriebssystems zu optimieren.

Parameter für Permanentmagnet Synchronmotor PMSM (F106=6)

F861 PMM Steuermodus	Auswahl 0: PMM Modus 1 1: PMM Modus 2	Werkseinstellung 0
F862 PMM Modus Umschaltschwelle	Bereich: 0,150%	Werkseinstellung 5%

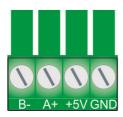
Nach Eingabe aller Motordaten laut Typenschild kann eine AUTOTUNING Prozedur gestartet werden, so wie oben beschrieben (Parameter F800...F810)

Folgende Motor-Parameter werden dabei ermittelt:

F870 Generierte Motor-Spannung – gegen EMK	Bereich: 0,165553,0 mV/rev.	Werkseinstellung:100,0mV/rev.
F871 Induktivität D-Achse (mH)	Bereich: 0,01655,35 mH	
F872 Induktivität Q-Achse (mH)	Bereich: 0,01655,35 mH	
F873 Statorwiderstand (Ohm/Phase)	Bereich: 0,00165.535 Ohm	
F876 Leerlaufstrom (% Nennstrom)	Bereich: 0,0100 %	Werkseinstellung 20%
F877 Kompensation Leerlaufstrom (%)	Bereich: 0,050,0 %	Werkseinstellung 0%
F878 Einsatzpunkt Leerlaufstr. Komp.	Bereich: 0,050,0 %	Werkseinstellung 10%
F879 Stromerhöhung unter Last	Bereich: 0,0100 %	Werkseinstellung 0,0%
F880 Regler Taktrate	Bereich: 0,0110 sec.	Werkseinstellung 0,2 sec.

16) Parametergruppe 900: RS485 Hardware und Schnittstellenparameter

Für MODBUS Protokoll, Steuersignale und Parameterwerte, welche über MODBUS gesetzt werden können bitte die entsprechende detaillierte MODBUS Beschreibung anfordern.


F900 Geräteadresse	Auswahl: 1> 255: fixe Umrichteradresse 0: zuordenbare Umrichteradress	se Werkseinstellung: 1
F901 Schnittstellen Modus	Auswahl: 1: ASCII 2: RTU	Werkseinstellung: 2
F902 Anzahl STOP Bits	Auswahl: 1 - 2	Werkseinstellung: 2
F903 Paritätsprüfung	Auswahl: 0: keine Prüfung 1: ungerade Parität 2: gerade Parität	Werkseinstellung: 0
F904 Baud Rate	Auswahl: 0: 1200 1: 2400 2: 4800 3: 9600 4: 19200 5: 8400 6: 57600	Werkseinstellung: 3
F905 MODBUS TimeOut	Bereich: 0.03000 sec.	Werk: 0,0 sec
F907 MODBUS TimeOut Warnur	g Bereich: 0.03000 sec.	Werk: 0,0 sec

F905: Modbus Time out: wenn F905>0 gesetzt, und der Umrichter für die, in F905 eingestelle Zeit kein Modbussignal erhält, wird der Antrieb angehalten und eine Fehlermeldung CE im Display angezeigt F905=0: Time out Funktion ist deaktiviert.
F907: Modbus Time out - temporär: wenn F907>0 gesetzt, und der Umrichter für die, in F907 eingestellte Zeit kein ModbusSignal erhält, wird eine Fehlermeldung über einen programmierbaren Digitalausgang (Zuordnungscode 43) gesendet. Dieses Fehlersignal kann über einen programmierbaren Digitaleingang (Zuordnungscode 60) wieder zurückgesetzt werden.

Hardware MODBUS Schnittstelle:

JS-Technik Umrichter besitzen eine einheitliche MODBUS Schnittstelle. Diese dient sowohl zur Umrichtersteuerung über MODBUS, als auch zur Parametrierung mittels PC-Software bzw. Parameter-Kopierstick.

Der Anschluss erfolgt über eine 4-polige steckbare Klemme mit folgender Pinbelegung:

Die 5 V Hilfsversorgung ist für 50 mA ausgelegt und liegt auf Prozessor- / Analogmasse.

Umrichter bis 30 kW, Baugröße E1 - E6:

Die Schnittstelle ist an der linken Seite des Umrichters direkt zugänglich.

Umrichter über 30 kW, Baugröße E7 - CB:

Die Schnittstelle sitzt im Inneren der Geräte auf der Steuerkarte

F911 Master/Slave Steuerung	Auswahl: 0: deaktiviert 1: aktiviert	Werkseinstellung: 0
F912 Master/Slave Wahl	Auswahl: 0: Master 1: Slave	Werkseinstellung: 0
F913 Slave START	Auswahl: 0: Unabhängig 1: Master gesteuert 2: Reserviert	Werkseinstellung: 1
F914 Slave Fehler Info	Bereich: H0000H0001	Werkseinstellung: H 0001
F915 Slave Fehler Reaktion	Auswahl: 0: Keine Reaktion 1: STOP Auslauf 2: STOP Rampe	Werkseinstellung: 1
F916 Slave STOP Modus	Auswahl: 0: STOP freier Auslauf 1: STOP über Rampe	Werkseinstellung: 1
F917 Master zu Slave Vorgabe	Auswahl: 0: Drehmoment 1: Master Sollwert 2: Master Frequenz	Werkseinstellung: 0
F918 Offset Drehmoment	Bereich: 0,00200,00	Werkseinstellung: 100,00
F919 Drehmoment Multiplikator	Bereich: 0,0001,000	Werkseinstellung: 1,000
F920 Frequenz Offset	Bereich: 0,00200,00	Werkseinstellung: 100,00
F921 Frequenz Multiplikator	Bereich: 0,0001,000	Werkseinstellung: 1,000
F922 Slave Drehzahl Fenster	Bereich: 0,0010,00	Werkseinstellung: 0,50
F923 Slave Folgefaktor	Bereich: 0,030,0	Werkseinstellung: 0.0
F924 Master/Slave Timeout	Bereich: 0,03000,0 sec	Werkseinstellung: 0,0 sec
F925 Master Sendeintervall	Bereich: 0,0001,3000 sec	Werkseinstellung: 0,000 sec
F926 CAN Baudrate	Auswahl: 0: 20 1: 50 2: 100 3: 125 4: 250 5: 500 6: 1000	Werkseinstellung: 6
F928 BACNET Adresse	Bereich: 0127	Werkseinstellung: 1
F929 BACNET Baudrate	Auswahl: 0: 9600 1: 19200 2: 38400 3: 76800	Werkseinstellung: 1
F930 Keypad Timeout	Bereich: 010	Werkseinstellung: 0
F933 BAC Interface Adresse	Bereich: 065535	Werkseinstellung: 1

17) Parametergruppe A00: Reglerparameter

Interner PID Regler

E2100 Umrichter verfügen über einen eingebauten PID-Regler, welcher für einfache Regelaufgaben mit Rückführung konfiguriert werden kann.

<i>FA00</i> Konfiguration Regler Modus	Auswahl: 0: Einzelregler / Einzelpumpe (PID Regler) 1: Master/Slave Mode 2: Master/Slave mit Umreihung	Werkseinstellung: 0
--	--	---------------------

Wenn FA00=0: Einfacher PID Regler (Einzelpumpe).

Wenn FA00=1: Zweipumpenbetrieb, eine geregelt, die andere bei Bedarf fix ans Netz zugeschaltet.

Wenn FA00=2: Zweipumpenbetrieb, mit automatischer Umreihung (FA25)

Konfiguration der Kanäle für Sollwert und Rückführung (Siehe Grafik folgende Seite):

itoinigai attori ao italiano iai	Controls and Rackiani ang Colone Claim is	rigeriae centej.
<i>FA01</i> Quelle für Regler-Sollwert	Auswahl: 0: Intern vorgegeben (Wert in FA04) 1: Analogeingang Al1 2: Analogeingang Al2 3: Reserviert 4: Frequenz / Pulseingang	Werkseinstellung: 0
FA02 Quelle für Regler-Istwert (Rückführung)	Auswahl: 1: Analogeingang Al1 2: Analogeingang Al2 3: Frequenz/Pulseingang 4: MODBUS 5: Motorstrom 6: Motorleistung 7: Drehmoment	Werkseinstellung: 1

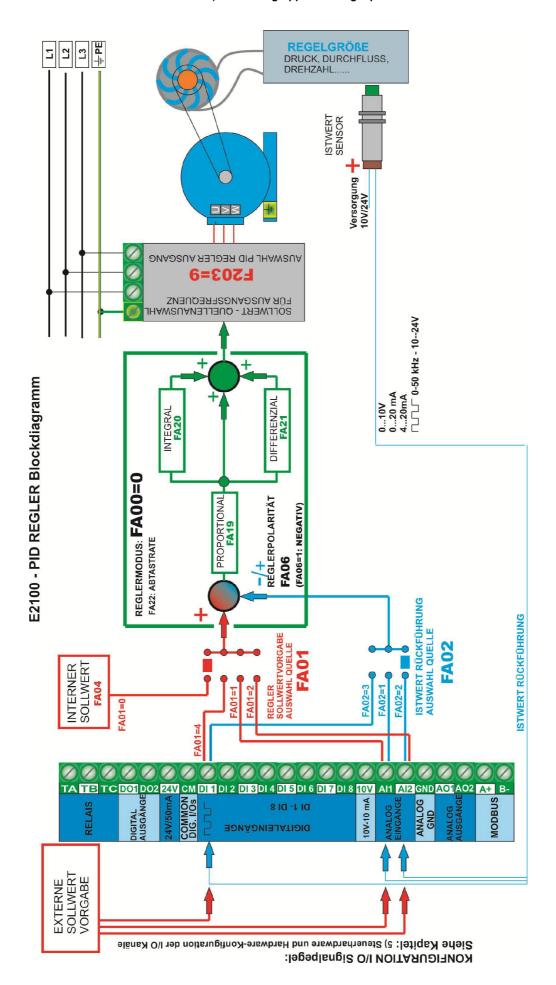
FA03 Obere Reglergrenze (% vom Sollwert)	Bereich: FA04E 100.0%	Werkseinstellung: 100.0%
FA04 Fixe digitale Reglersollwertvorgabe (%)	Bereich: FA05FA03%	Werkseinstellung: 50.0%
FA05 Untere Reglergrenze (% vom Sollwert)	Bereich: 0.0E FA04%	Werkseinstellung: 0.0%

Werden die Grenzen FA03 oder FA05 vom Istwert nicht eingehalten, so wird eine Fehlermeldung ausgegeben (nP)

FA06 PID Regleralgorythmus – Polarität der	Auswahl: 0: Positiv	Werkseinstellung: 1
Rückführung	1: Negativ	werksemstending. I

Negativ z.B. für Druck/Durchflussregelung,

Aktivierung Schlafmodus


FA07 Automatische Abschaltfunktion (Schlafmodus)	Auswahl: 0: Aktiv 1: Inaktiv	Werkseinstellung: 1
FA09 Minimalfrequenz im Reglermodus (Hz)	Bereich: Wert in (F112E F111)	Werkseinstellung: 5.00 Hz
FA10 Verzögerungszeit für Schlafmodus (sec.)	Bereich: 0E 500 sec.	Werkseinstellung: 15 sec.
FA11 Verzögerungszeit für Wiederanlauf (sec.)	Bereich: 0E 3000 sec.	Werkseinstellung: 3.0 sec

Nachdem der Umrichter eine Bestimmte Zeit **(FA10)** auf einer Mindestfrequenz **(FA09)** gelaufen ist erfolgt eine totale Abschaltung (Schlafmodus), vorausgesetzt, dass der Istwert (Druck) innerhalb der festgelegten Limits ist. Gemeldet wird dieser Staus mit **nP** im Display.

Fällt der Istwert (Druck) unter die, in **(FA05)** festgelegte Grenze, dann läuft der Umrichter nach der, in **(FA11)** festgelegten Zeit automatisch wieder an

FA12 Maximalfrequenz in Reglerbetrieb	Bereich: FA09F111	Werkseinstellung: 50Hz
FA15 Unterbrechungs-Erkennung Rückführung	Auswahl: 0: Erkannt 1: Ignoriert	Werkseinstellung: 0
FA16 Erkennungsschwelle	Bereich: 0,0100,0%	Werkseinstellung: 1.0%
FA17 Verzögerung Erkennung	Bereich: 1.0E 10,0 sec	Werkseinstellung: 5,0 sec
FA18 Sollwertänderung	Auswahl: 0: Blockiert 1: Zulässig	Werkseinstellung: 1

Wenn FA18=0 gesetzt, so kann der fix vorgegebene Reglersollwert (FA04) nicht während des Betriebes verändert werden

- 76 -

PARAMETRIERUNG der REGELSTRECKE

FA19 Proportionalanteil P	Bereich: 0.00E 10.00	Werkseinstellung: 0.30
FA20 Integralanteil I (sec.)	Bereich: 0.1E 100.0	Werkseinstellung: 0.3 sec.
FA21 Differentialanteil D (sec.)	Bereich: 0.00E 10.00	Werkseinstellung: 0.0 sec.
FA22 Regler Zykluszeit / Abtastrate (msec)	Bereich: 1E 500	Werkseinstellung: 5 msec.

FA23 Negative Regelresultate (Drehrichtungsumkehr)	Auswahl: 0: nicht erlaubt 1: erlaubt	Werkseinstellung: 0
(Dreiffichtungsumkent)	i. eriaubt	

Umreihung

FA24 Umreihung Zeiteinheit	Auswahl: 0: Stunden 1: Minuten	Werkseinstellung: 0
FA25 Zeit für Umreihung	1~9999	Werkseinstellung: 100

Leerlauf/Wassermangelschutz

FA26 Wassermangel Schutz Konzept	Auswahl: 0: KeinSchutz 1: Sensor über Digitaleingang 2: Über Regler 3: Über Motorstrom	Werkseinstellung: 0
FA27 Stromschwelle für Interpretation Wassermangel (% - Nennstrom)	Bereich: 10E 150 %	Werkseinstellung: 80%
FA28 Restartverzögerung (sec.)	Bereich: 0.0E 3000 sec.	Werk: 60 sec.
FA66 Verzögerung Auslösung Wassermangelmeldung (FA26=3)	Bereich: 0E 60 sec.	Werkseinstellung: 2 sec.

Wenn **FA26=1** gesetzt ist, dann wird der Wassermangel über zwei Digitaleingänge gemeldet: wenn Wassermangel Signal vorhanden (30), dann wird der Umrichter gestoppt und der Fehler **EP1** angezeigt. Ein "Wasser OK" Signal (31) löscht die Fehleranzeige und erzeugt einen automatischen Reset. Fehlerauslösung erfolgt unverzögert.

Wenn **FA26=2**: Im Falle dass der Regler bis zur Maximalfrequenz hinaufregelt und der Motorstrom dennoch unterhalb des, in **FA27** eingestellten Wertes vom Nennstrom bleibt, so wird das als ein Signal für Wassermangel interpretiert und ein Fehlercode **EP2** wird im Display wird angezeigt. Die Fehlerauslösung erfolgt unverzögert.

Wenn **FA26=3**: Der Wassermangel wird über den Motorstrom detektiert, falls dieser unter den, in **FA27** eingestellten Wert fällt. Die Fehlerauslösung erfolgt nach der, in **FA66** eingestellten Zeit, der Fehler wird durch **EP3** im Display angezeigt.

Über **FA28** kann eine Wiederanlauf-Verzögerung eingegeben werden, nach welcher der Umrichter überprüft, ob die Wassermangel- / Leerlaufbedingung noch vorhanden ist und dann gegebenenfalls wieder startet. Über **STOP** Taste kann der Umrichter manuell rückgesetzt werden.

Regler Totzone +/- % um den Sollwert

FA29 Regler Totzone (% - Sollwert)	Bereich: 0.0 - 10.0 %	Werkseinstellung: 2.0

⁻ Innerhalb der Regler Totzone erfolgt keine Regelaktivität, die Ausgangsfrequenz bleibt konstant

Spezielle Pumpenparameter für Zweipumpenbetrieb (eine Pumpe Umrichtergesteuert, eine am Netz zugeschaltet)

FA30 Verzögerung START Umrichterpumpe (sec.)	Bereich: 2.0 - 999.9 sec.	Werkseinstellung: 20.0
FA31 Verzögerung START Netzpumpe (sec.)	Bereich: 0.1 - 999.9 sec.	Werkseinstellung: 30.0
FA32 Verzögerung STOP Netzpumpe (sec.)	Bereich: 0.1 - 999.9 sec.	Werkseinstellung: 30.0

Läuft der Istwert über die Grenzen, bestimmt durch die Totzone hinaus, so wird die direktbetriebene (Netz) Pumpe mit den, in den Parametern FA31 und FA32 eingegebenen Verzögerungen gestartet, bzw. gestoppt.

FA33 Master/slave STOP Modus	Auswahl: 0: Freier Auslauf 1: Über Rampe	Werkseinstellung: 0
<i>FA36</i> Relais 1	Auswahl: 0: Nicht vorhanden 1: Vorhanden	Werkseinstellung: 0
FA37 Relais 2	Auswahl: 0: Nicht vorhanden 1: Vorhanden	Werkseinstellung: 0

PID Regler - alternativer Parametersatz

FA38 Proportionalanteil (2) P	Bereich: 0.00E 10.00	Werkseinstellung: 0.3
FA39 Integralanteil (2) I (sec.)	Bereich: 0.1E 100.0 sec.	Werkseinstellung: 0.3
FA40 Differentialanteil (2) D	Bereich: 0.00E 10.00	Werkseinstellung: 0.0
<i>FA41</i> PID Alternativparameter Umschaltung	Auswahl: 0: Keine Umschaltung 1: Reserviert 2: Automatisch 3: Reserviert	Werkseinstellung: 0

PID Alternativparameter Umschaltschwellen

-			
	FA42 Umschaltschwelle 1	Bereich: FA05FA43	Werkseinstellung: 0.0
Γ	FA43 Umschaltschwelle 2	Bereich: FA42FA03	Werkseinstellung: 0.0

FA47 Relais 1 START-Folge	Bereich: 120	Werkseinstellung: 20
FA48 Relais 2 START-Folge	Bereich: 120	Werkseinstellung: 20

Notfunktionen

+

FA59 Notbetriebsarten	Auswahl: 0: Keine Notfunktion 1: FIREMODE 1 2: FIREMODE 2	Werkseinstellung: 0
FA60 Frequenz für Notbetrieb	Bereich F112E F111	Werkseinstellung: 50 Hz
FA58 Druck für Notbetrieb	Bereich 0.0E .100%	Werkseinstellung: 80%
FA62 Reset Möglichkeiten	Auswahl: 0: Kein RESET möglich 1: RESET über dig. Eingang	Werkseinstellung: 0

Der Notbetrieb wird über entsprechend zugeordnetes Klemmensignal aktiviert (33), alle Schutzmechanismen im Umrichter werden unterdrückt, automatischer RESTART im Fehlerfalle ist aktiviert.

FIREMODE 1 Umrichter läuft mit der durch den Sollwert bestimmten Frequenz FIREMODE 2, Umrichter läuft mit der, in Parameter **FA60** vorgegebenen Frequenz

Druck-Notbetrieb wird durch entsprechend programmierten Eingang aktiviert (32)

FA62=0: Umrichter bleibt nach Aktivierung im FIRE Modus, Rücksetzen nicht möglich **FA62=1:** FIRE Modus wird rückgesetzt, sobald das Auslösesignal nicht mehr vorhanden ist

FA67 Standby Modus	Auswahl: 0: Standby Modus 1 1: Standby Modus 2	Werkseinstellung: 0
--------------------	---	---------------------

FA68 Drucklimit 1	Bereich 0,0E 100,0%	Werkseinstellung: 30%	
FA69 Drucklimit 2	Bereich 0,0E 100,0%	Werkseinstellung: 30%	

18) Parametergruppe C00: Drehzahl/Drehmomentsteuerung

E2100 Umrichter können sowohl Drehzahl-, als auch Drehmoment-gesteuert betrieben werden. Diese Betriebsarten sind allerdings nur im VECTOR MODUS verfügbar (F106=0)

FC00 Drehzahl / Drehmoment Steuerung	Auswahl: 0: Drehzahl - gesteuert 1: Drehmoment - gesteuert 2: Auswahl über Klemmensignal	Werkseinstellung: 0
---	--	---------------------

FC00=0: Drehzahl wird durch den Sollwert vorgegeben, das Drehmoment stellt sich lastabhängig ein, begrenzt durch das maximal verfügbare Drehmoment des Umrichters.

FC00=1: Drehmoment wird durch den Sollwert vorgegeben, die Drehzahl stellt sich abhängig von der Last ein. Die Drehzahlbegrenzung kann durch die Parameter **FC22/23...FC24/25** eingestellt werden.

FA00=2: Die Umschaltung zwischen Drehzahlsteuerung und Drehmomentsteuerung erfolgt über ein entsprechend konfiguriertes Klemmensignal (20)

FC02 Hochlauf / Tieflaufzeit Drehmomentaufbau (sec.)	Bereich: 0,1100 sec.	Werkseinstellung: 1 sec.
--	----------------------	--------------------------

Zeit zum Aufbau, bzw. Abbau des Drehmomentes von 0....100%

Sollwertvorgabe für Drehmomentsteuerung

<i>FC06</i> Quelle für Drehmomentsollwert	Auswahl: 0: Intern vorgegeben FC09 1: Analogeingang Al1 2: Analogeingang Al2 3: Reserve 4: Pulseingang 5: Reserve	Werkseinstellung: 0
---	---	---------------------

FC07 Drehmomentbereich, bezogen auf Motornennmoment	Bereich: 0.0E 3.000	Werkseinstellung: 3.000	
FC09 Interne Vorgabe (%)	Bereich: 0E 300.0 %	Werkseinstellung: 100 %	

FC07: Bereich, welcher 0-100% Sollwert entspricht, bezogen auf das Motor-Nennmoment

FC09: Interne Vorgabe Drehmoment

Funktion frequenzabhängige Drehmomentanhebung (Losbrechmoment für Schweranlauf)

FC14 Sollwertvorgabe für Drehmomentanhebung	Auswahl: 0: Intern vorgegeben FC17 1: Analogeingang Al1 2: Analogeingang Al2 3: Reserve 4: Pulseingang 5: Reserve		Werkseinstellung: 0
FC15 Faktor Anhebung		Bereich: 0.000E 0,500	Werkseinstellung: 0,500
FC16 Frequenzlimit für Losbrechmoment (%) f-max.		Bereich: 0E 100 %	Werkseinstellung: 10 %
FC17 Interne Vorgabe Losbrechmoment		Bereich: 050,0%	Werkseinstellung: 10 %

FC14: Frequenzabhängige Drehmomentanhebung für Schweranlauf – zusätzlich zum vorgegebenen Drehmoment

FC15: Sollwertgesteuerte Anhebung in bezogen auf Motornennmoment

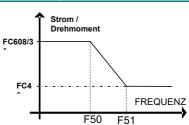
FC16: Bis zu dieser Schwelle wirkt die Drehmomentanhebung

Drehmoment/ Drehzahlbegrenzung

Drehzahlbegrenzung bei Drehmomentsteuerung (im Bezug auf f-max – F111):

FC22 Referenz für Drehzahlbegrenzung vorwärts	Auswahl: 0: Intern vorgegeben FC23 1: Analogeingang Al1 2: Analogeingang Al2 3: Reserve 4: Pulseingang 5: Reserve	Werkseinstellung: 0
FC23 Interne Vorgabe Drehzahlbegrenzung	Bereich: 0100 %	Werkseinstellung: 10%
<i>FC24</i> Referenz für Drehzahlbegrenzung rückwärts	Auswahl: 0: Intern vorgegeben FC25 1: Analogeingang Al1 2: Analogeingang Al2 3: Reserve	Werkseinstellung: 0
FC25 Interne Vorgabe Drehzahlbegrenzung	Bereich: 0100 %	Werkseinstellung: 10%

Drehmomentbegrenzung bei Drehzahlsteuerung (im Bezug auf Motor Nennmoment):


FC28 Vorgabe Drehmomentbegrenzung motorisch	Auswahl: 0: Intern vorgegeben FC30 1: Analogeingang Al1 2: Analogeingang Al2 3: Reserve 4: Pulseingang 5: Reserve	Werkseinstellung: 0	
FC29 Relation, 100% Sollwertbezug auf Motornennmoment	Bereich: 0,03,000	Werkseinstellung: 3,000	
FC30 Interne Vorgabe Drehmomentbegrenzung (%)	Bereich: 0300% %	Werkseinstellung: 200%	

FC33 Vorgabe Drehmomentbegrenzung generatorisch	Auswahl: 0: Intern vorgegeben FC35 1: Analogeingang Al1 2: Analogeingang Al2 3: Reserve 4: Pulseingang 5: Reserve	Werkseinstellung: 0
FC34 Relation, 100% Sollwertbezug auf Motornennmoment	Bereich: 0,03,000	Werkseinstellung: 3,000
FC35 Interne Vorgabe Drehmomentbegrenzung (%)	Bereich: 0300% %	Werkseinstellung: 200%

Frequenzabhängige Drehmoment/ Strombegrenzung (Feldschwächbereich Grenze)

FC48 Frequenzabhängigkeit	Auswahl: 0: Fixe Begrenzung 1: Frequenzabhängige Begrenzung	Werkseinstellung: 0
FC49 Sekundäre Strom/Drehmomentgrenze (%)	Bereich: F608200 %	Werkseinstellung: 190%
FC50 Startpunkt Übergang zu sekundärer Grenze (Hz)	Bereich: 1.00 HzFC51	Werkseinstellung: 10,00 Hz
FC51 Endpunkt Übergang zu sekundärer Grenze (Hz)	Bereich: FC50F111 (Hz)	Werkseinstellung: 20,00 Hz

Dient zur frequenzabhängigen Strombegrenzung im V/Hz Modus, bzw. zur Drehmomentbegrenzung im SLV Modus

19) Alternative Motorparameter - Alternativmotor

FE00 Motor-Parameter Umschaltung	Letzte Stelle=Motorauswahl:	0: Standardparameter / -Motor aktiv 1: Alternativparameter / -Motor aktiv 2: Auswahl über Klemmen	w . 0020
Alternativmotor Steueralgorythmus	Vorletzte Stelle=Alternativmotor : Steueralgorythmus	0: Sensorless Vector SLV 1: Closed Loop Vector control CLV 2: V/Hz control 3: Reserviert	Werk: 00 20

Für die Konfiguration eines alternativen Motors mit separatem Motordatensatz

Alternativmotor kann direkt angewählt werden, (letzte Stelle FE00=0/1) oder über Klemmen (Zuordnungscode 51)

Steueralgorythmus für den Alternativmotor wird über die vorletzte Stelle von **FE00** bestimmt

Für die Umschaltung muss sich der Umrichter im STOP Modus befinden

FE01 Motor 2 - Nennleistung (kW)	Bereich: 0.2: 1000 kW	
FE02 Motor 2 - Nennspannung (V)	Bereich: 1: 1300 V	
FE03 Motor 2 - Nennstrom (A)	Bereich: 0.2: 6553,5 A	
FE04 Polzahl (p) (read only!!)	Automatisch ermittelt	READ ONLY
FE05 Motor 2 Nenndrehzahl (U/min)	Bereich: 1: 30000 U/min	
FE10 Motor 2 - Nennfrequenz (Hz)	Bereich: 1.0: 300.0 Hz	Werkseinstellung: 50.00Hz

Autotuning Ergebnisse (ASYNCRON Motor)

Motor 2 Statorwiderstand (Ohm)	Bereich: 0.001: 65.00 Ohm
FE07 Motor 2 Rotor Widerstand (Ohm)	Bereich: 0.001: 65.00 Ohm
F505 Motor 2 Streureaktanz (mH)	Bereich: 0.01: 650.0 mH
FE09 Motor 2 Hauptreaktanz (mH)	Bereich: 0.1: 6500 mH

FE11 Motor 2 Leerlaufstrom	

FE12 Motor 2 Typ	Auswahl: 0: Standardmotor 1: Spezieller Umrichtermotor	Werkseinstellung: 1
------------------	---	---------------------

Drehzahlregler Parameter SLV Modus Motor 2 (ASYNCRON Motor)

PE13 Proportionalfaktor Drehzalregler Bereich 1 KP1	Bereich: 1: 100	Werkseinstellung: 30
FE14 Integralfaktor Drehzahlregler Bereich 1 KI1	Bereich: 0.01: 10.00	Werkseinstellung: 0.5
FE15 Proportionalfaktor Drehzalregler Bereich 2 KP2	Bereich: 1: 100	Werkseinstellung: 20
FE16 Integralfaktor Drehzahlregler Bereich 2 Kl2	Bereich: 0.01: 10.00	Werkseinstellung: 1.00
FE17 PID Bereichs-Übergang 1	Bereich: 0: F818	Werkseinstellung: 5.00 Hz
FE18 PID Bereichs-Übergang 2	Bereich: F817: F111	Werkseinstellung: 10.00 Hz

Motor 2 Rampenauswahl

	Auswahl: 0: Wie Motor 1	
FE19 Motor 2 Hoch-/Tieflauframpe	1: Rampensatz 1	Werkseinstellung: 0
	2: Rampensatz 2	

FE20 Motor 2 V/Hz linear BOOST	Bereic	h: 1: 20		Werkseinstellung: 7	
Motor 2 Überlast Warnung / Abscha	ltung				
FE21 Motor 2 Überlast Abschaltschwelle	Bereic	Bereich: 20: 100%		Werkseinstellung: 100%	
FE22 Motor 2 Überlast Warnschwelle	Bereic	Bereich: 50: 100%		Werkseinstellung: 80%	
	1			-	
FE23 Motor 2 Pendeldänpfung		Bereich: 0: 100	Werks	seinstellung: 10	
FE24 Motor 2 Schlupfkompensation		Bereich: 50: 200%	Werks	Werkseinstellung: 100	
FE25 Motor 2 Drehzahlregler Filterkonstante		Bereich: 0: 100	Werks	seinstellung: 0	

Motor 2 Fehlerspeicher

FE33 Letzter Fehler		FE36 Frequenz beim letzten Fehler (Hz) FE37 Strom beim letzten Fehler (A) FE38 ZK-Spannung beim letzten Fehler (V)
FE34 Vorletzter Fehler	Fehlercodes: Siehe Tabelle am Anfang dieses Kapitels	FE39 Frequenz beim vorletzten Fehler (Hz FE40 Strom beim vorletzten Fehler (A) FE41 ZK-Spannung beim vorletzten Fehler (V)
FE35 Drittletzter Fehler		FE42 Frequenz beim drittletzten Fehler (Hz) FE43 Strom beim drittletzten Fehler (A) FE44 ZK-Spannung beim drittletzten Fehler (V)

Motor 2 Fehlerzähler:

FE45 Ereignis-Zähler Überstromfehler	ОС	
FE46 Ereignis-Zähler Überspannungsfehler	OE	
FE47 Ereignis-Zähler Übertemperaturfehler	ОН	
FE48 Ereignis-Zähler Überlastfehler	OL1	
FE50 OC1 Zähler	OC1	

FE49 Motor 2 OC1 Überlastschwelle	Bereich: 0.5: 3.00 sec.	Werkseinstellung: 2,50
		1
FE51 Motor 2 Encoder Auflösung	Bereich: 19999	Werkseinstellung: 1000

Motor 2 PMM Motordaten

FE70 Generierte Motor-Spannung – gegen EMK	Bereich: 0,165553,0 mV/rev.	100,0mV/rev.	
FE71 Induktivität D-Achse (mH)	Bereich: 0,01655,35 mH		
FE72 Induktivität Q-Achse (mH)	Bereich: 0,01655,35 mH	Werkseinstellung : Abhängig von Motorleistung	
FE73 Statorwiderstand (Ohm/Phase)	Bereich: 0,00165.535 Ohm		
FE76 Leerlaufstrom (% Nennstrom)	Bereich: 0,0100 %	Werkseinstellung 20%	
FE77 Kompensation Leerlaufstrom (%)	Bereich: 0,050,0 %	Werkseinstellung 0%	
FE78 Einsatzpunkt Leerlaufstr. Komp.	Bereich: 0,050,0 %	Werkseinstellung 10%	
FE79 Stromerhöhung unter Last	Bereich: 0,0100 %	Werkseinstellung 0,0%	
FE80 Scan-rate controller	Bereich: 0,0110 sec.	Werkseinstellung 0,2 sec.	

19) E2100 Diagnosetools

Intelligente Tools helfen bei Inbetriebnahme und Fehlersuche.

Abfrage Digitaleingänge

F330 Digitaleingang Statusabfrage	Über die einzelnen Segmente der Anzeige kann der Status der Digitaleingänge angezeigt werden. Beginnend von links für DI1 bis DI8 Bei aktiviertem Eingang wandert der Segmentbalken nach unten
-----------------------------------	---

Stimulation Digitalausgänge

F335 Stimulation Relaisausgang	Mit den Tasten und	
F336 Stimulation Digitalausgang DO1	kann der jeweilige Ausgang aus- und	
F337 Stimulation Digitalausgang DO2	eingeschaltet werden	

Stimulation Analogausgänge

ggg	
F338 Stimulation Analogausgang AO1	Mit den Tasten und
F339 Stimulation Analogausgang AO2	kann der jeweilige Ausgang im Bereich 04096 verändert werden

Optionales 4 Zeilen Keypad:

Parameter F330 zeigt den Zustand aller analogen/digitalen I/O an

Betriebsparameter, angezeigt in Parametergruppe HXX:

H000	Actueller Frequenzsollwert
H001	Actueller Drehzahlsollwert
H002	Motorstrom
H003	Motorspannung
H004	Zwischenkreisspannung
H005	PID Istwert
H006	Kühlkörpertemperatur
H007	Zählerstend
H008	Errechnete Geschwindigkeit
H009	PID Sollwert
H012	Motorleistung
H013	Drehmoment
H014	Drehmoment Sollwert
H016	Strom/Spannungsbegrenzung SW
H017	Frequenzabfolgesteuerung Schritt Nr.
H018	Pulsfrequenz Eingang
H019	Drehzahl Istwert
H021	Al1 Sollwert
H022	Al2 Sollwert
H025	Betriebsstunden mit Netz-EIN
H026	Betriebsstunden Umrichter aktiv
H027	Frequenz Eingang
H028	Schnittstellen Parameter
H030	Primärer Sollwert
H031	Sekundärer Sollwert
H033	Master Drehmoment SW
H034	Master frequenz SW
H035	Slave Nummer
H036	Betriebsstunden NETZ-EIN total
H037	Bertriebsstunden AKTIV total
	· · · · · · · · · · · · · · · · · · ·